[image: __cover__.png]
XMLmind Ebook Compiler Manual
Hussein Shafie
XMLmind Software
35 rue Louis
 Leblanc,
78120 Rambouillet,
France,
Phone: +33 (0)9 52 80 80
 37,
Web: www.xmlmind.com/ebookc
Email:
 ebookc-support@xmlmind.com
November 4,
 2024

List of Figures
	3-1. This manual, manual.ebook,
 opened in XMLmind XML Editor
	6-1. The "Edit index term" dialog box of XMLmind
 XML Editor
	8-1. XMLmind Ebook Compiler
 components
	10-1. Page
 areas
	10-2. Layout of a
 header

List of Tables
	4-1. Table caption here
	6-1. Admonition classes
	9-1. Low-level processor options
	9-2. Output formats

List of Examples
	4-1. Example of conditional
 processing
	4-2. Transclusion works fine
 within the same input HTML page
	6-1. "Hello World" program in the C
 language

List of Equations
	6-1. Special relativity

Part I. User guide
Table of Contents
	1. What is XMLmind Ebook Compiler?
	2. Primer
	3. Getting started
	4. Handy features	4.1. Markdown support	4.1.1. Supported Markdown extensions

	4.2. Automatic resource management
	4.3. Conditional processing
	4.4. Transclusion

Chapter 1. What is XMLmind Ebook Compiler?
XMLmind Ebook Compiler (ebookc for short) is a free,
 open source tool which can
 turn a set of HTML (or Markdown) pages into a self-contained
 ebook[1]. Supported output formats are: EPUB, Web
 Help, PDF[2], RTF, WML, DOCX
 (MS-Word) and ODT
 (OpenOffice/LibreOffice)[3].
[image: Overview of XMLmind Ebook Compiler]
You can of course use
 ebookc to create books having a simple structure like novels,
 but this tool also has all the features needed to create large, complex,
 reference manuals:

 	Builds on topic-oriented structuring like DITA or DocBook 5.1. (Each source HTML page is expected to
 deal with a single topic.)

 	Automatic generation of global and local table of contents.

 	Automatic generation of a “back-of-the-book index”.

 	Automatic numbering of parts, chapters, appendices, sections,
 figures, tables, examples and equations.

 	Automatic creation of links between some user-specified book
 divisions.

 	Automatic generation of text in cross-references.

 	Footnote support.

 	Conditional processing (also called
 profiling).

 	Built-in support of XInclude (allows reuse of content at
 different locations in the book).

Being based on HTML, ebookc relies on CSS to create nicely
 formatted books and this, even for output formats like PDF and DOCX which
 are not directly related to HTML and CSS.
All in all,
 ebookc is an authoring and publishing tool nearly as
 powerful as DITA or DocBook and their advanced conversion toolkits, but
 being based on HTML and on CSS, it is much easier to learn, use and
 customize. Moreover you can create with it ebooks which are more interactive
 (audio, video, slide shows, multiple-choice questions, etc)
 than those created using DITA or DocBook.

[1] Here “ebook” shall be understood
 in the widest possible sense.
[2] Requires an
 XSL-FO processor like Apache FOP, RenderX
 XEP, Antenna House Formatter to be installed and registered
 with XMLmind Ebook Compiler (for example, using option
 -foconverter). We'll assume in this manual that you have
 downloaded and installed the distribution of XMLmind Ebook Compiler which
 includes Apache FOP.
[3] Requires XMLmind XSL-FO Converter to be installed and registered
 with XMLmind Ebook Compiler (using option -xfc).

Chapter 2. Primer
A book is an assembly of HTML pages
The
 basic idea is simple. You author a set of HTML pages and then you create an
 ebook specification assigning a role —part, chapter, section, appendix, etc—
 to each page. Example: primer/book1.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 href="titlepage.html">
 <frontmatter>
 <toc/>
 </frontmatter>

 <chapter href="ch1.html"/>

 <chapter href="ch2.html"/>

 <appendix href="a1.html"/>
</book>

The HTML pages comprising a book may contain anything
 you want including CSS styles and links between the pages (e.g.
). However make sure that this
 content is valid XHTML[1].
Once the ebook
 specification has been created, you can compile it using XMLmind Ebook
 Compiler and generate EPUB, Web
 Help, PDF[2], RTF, ODT, DOCX[3],
 etc. Examples:
ebookc book1.ebook out/book1.epub

ebookc book1.ebook out/book1.pdf
“Rich”,
 numbered, chapter titles
If you look at out/book1.pdf,
 you'll see that chapter and appendix titles are numbered and that these
 titles are copied verbatim from the html/head/title of the
 corresponding input HTML page.
It's of course possible to specify how
 book components should be numbered (if at all). It's also possible to
 replace the plain text titles of chapters and appendices by “rich”
 titles[4] by adding ebook:head child
 elements to the book divisions. Example: primer/book2.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml"
 href="titlepage.html" appendixnumber="A%1.">
 <frontmatter>
 <toc/>
 </frontmatter>

 <chapter href="ch1.html"/>

 <chapter href="ch2.html">
 <head>
 <title>“<html:em>Rich</html:em>” title of
 second chapter</title>
 </head>
 </chapter>

 <appendix href="a1.html"/>
</book>

The content of a ebook:head element
 specified this way is added to the html/head of the
 corresponding output HTML page, except for the ebook:title
 element which replaces html/head/title.
Assembling a book division rather than referencing
 an external file
We have already seen that it's possible to add a
 ebook:head child to elements like book[5],
 chapter, appendix, etc. Likewise, it's also
 possible to add a ebook:body child to any book division.
 Example: primer/book3.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml"
 appendixnumber="A%1">
 <head>
 <title>Title of this sample book</title>
 </head>
 <body>
 <content href="titlepage.html"/>
 </body>

 <frontmatter>
 <toc/>
 </frontmatter>

 <chapter href="ch1.html"/>

 <chapter href="ch2.html">
 <head>
 <title>“<html:em>Rich</html:em>” title of
 second chapter</title>
 </head>
 </chapter>

 <appendix href="a1.html"/>
</book>

In the above example, the content of the
 html/body element of file titlepage.html is
 “pulled” and added to the book. Several ebook:content child
 elements are allowed in an ebook:body element.
Controlling generated page names
When you
 generate multi-page HTML (e.g. Web Help) out of an ebook specification, it
 may be important to specify the names of the generated pages. It may also be
 useful to group several consecutive book divisions into the same output
 page.
This is specified using the pagename and
 samepage attributes of any book division. Example: primer/book4.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml"
 appendixnumber="A%1">
 <head>
 <title>Title of this sample book</title>
 </head>
 <body>
 <content href="titlepage.html"/>
 </body>

 <frontmatter>
 <toc/>
 <section href="intro.html" pagename="the introduction"/>
 </frontmatter>

 <chapter href="ch1.html">
 <section href="s1.html">
 <section href="s2.html" samepage="true"/>
 </section>
 </chapter>

 <chapter href="ch2.html">
 <head>
 <title>“<html:em>Rich</html:em>” title of
 second chapter</title>
 </head>
 </chapter>

 <appendix href="a1.html"/>
</book>

By default, each book division is created in its own
 file and the name of this file comes the href attribute of the
 book division. Web Help example:
ebookc -f webhelp book4.ebook out/book4

 	Without attribute pagename="the introduction", the
 introduction would have been generated in file
 out/book4/intro.html. With this attribute, the introduction
 is generated in file
 "out/book4/the introduction.html".

 	Without attribute samepage="true", the second section
 would have been generated in its own file
 out/book4/s2.html. With this attribute, the second section
 is appended to file out/book4/s1.html, also containing
 first section.

But wait a minute… HTML has not enough
 elements to write books
That's right, some semantic elements like
 admonitions, footnotes, etc, found in larger XML vocabularies like DITA or DocBook are missing from XHTML5. However, it's easy to
 emulate these missing elements by defining semantic values for the
 class attribute of standard HTML elements (typically
 span and div).
XMLmind Ebook Compiler has
 special support for the following semantic class names:

 	Semantic class

 	Description

 	<figure class="role-equation">

 	A “displayed equation” having a title
 (figcaption).

 	<figure class="role-example">

 	An example —for example a code snippet— having a title
 (figcaption).

 	<pre class="role-listing-c-1">

 	A code listing, possibly featuring line numbering and syntax
 coloring (class name suffix "-c-1" means: C language,
 first line number is 1).

 	<blockquote class="role-note">

 	Admonitions. Supported class names are: role-note,
 role-attention, role-caution,
 role-danger, role-fastpath,
 role-important, role-notice,
 role-remember, role-restriction,
 role-tip, role-trouble,
 role-warning.

 	

 	A short footnote, inline with the rest of the text.

 	<a class="role-footnote-ref"
 href="#fn1">

 	A call to footnote "fn1".

 	<div class="role-footnote" id="fn1">

 	Footnote "fn1".

 	Cat

 	An index term. May be much more elaborate than the very simple
 example shown here.

Excerpts from file primer/semantic_classes.html which has been
 added to primer/book5.ebook as its second
 appendix:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
	...
<figure class="role-equation">
 <figcaption>Figure containing
 an equation</figcaption>
 <div>
 <math display="block"
 xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <mi>E</mi>
 <mo>=</mo>
 <mrow>
 <mi>m</mi>
 <mo>⁢</mo>
 <msup>
 <mi>c</mi>
 <mn>2</mn>
 </msup>
 </mrow>
 </mrow>
 </math>
 </div>
</figure>
...
<p>Short footnoteContent of
short footnote..
...
<p>Simplest index termCat.
Other index termCatSiamese...</p>
...

Because primer/semantic_classes.html contains
 figures, tables and index terms, the following book divisions have also been
 added to primer/book5.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
13
	...
 <frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html" pagename="the introduction"/>
...
 <backmatter>
 <index/>
 </backmatter>
...

<lof/> specifies that a List of Figures is to
 be generated as a front matter. <lot/> means: List of
 Tables. <lox/> means: List of Examples.
 <loe/> means: List of Equations.
Nicely formatted books
If you compile primer/book5.ebook, you'll get a very
 dull result whatever the output format:
ebookc -f webhelp book5.ebook out/book5

ebookc book5.ebook out/book5.pdf
This is caused by the fact that all
 the source HTML pages referenced by book5.ebook do not specify
 any CSS style.
It's a good practice to keep it this way because this
 allows separation of presentation and content. However, you'll want to
 create nice books, so the simplest and cleanest is to add CSS styles to the
 ebook specification (and not to each input HTML page).
If you do it
 like this:
	1
2
3
4
5
6
7
8
9
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml"
 appendixnumber="A%1">
 <head>
 <title>Title of this sample book</title>
 <html:link href="css/styles.css" rel="stylesheet"
 type="text/css"/>
 </head>
 ...

The above specification would not work because only the
 title page would get styled.
You need to use a headcommon
 element for that. The child elements of headcommon are
 automatically copied the html/head of all output HTML pages.
 Excerpts from primer/book6.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml"
 appendixnumber="A%1">
 <headcommon>
 <html:link href="css/styles.css" rel="stylesheet"
 type="text/css"/>
 </headcommon>

 <head>
 <title>Title of this sample book</title>
 <html:style>
div.role-book-title-div {
 text-align: center;
}

h1.role-book-title {
 margin: 4em 0;
 padding-bottom: 0;
 border-bottom-style: none;
}
 </html:style>
 </head>
 ...

In the above example:

 	Element ebook:head may contain, not only
 ebook:title, but also any of the HTML elements allowed in
 html/head, namely style, script,
 meta, link. This facility is used here to give
 a specific style to the title page.

 	Unlike <blockquote class="role-note"> for
 example, which is found in the source HTML page,
 <div class="role-book-title-div"> and
 <h1 class="role-book-title"> are elements
 generated by XMLmind Ebook Compiler.Knowing about these
 elements is required to be able to give nice looks to the generated
 book. These elements and their class names are all listed in template/skeleton.css, with suggested
 CSS styles for some of these elements.

Leveraging base.css, the stock
 CSS stylesheet
As of version 1.4, the easiest way to add CSS styles
 to an ebook specification is to set attribute
 includebasestylesheet of element book to
 "true". This very simple setting guarantees to effortlessly
 create a nicely formatted book.
More precisely , attribute
 includebasestylesheet="true" instructs ebookc to
 include the
 ebookc_install_dir/xsl/common/resources/base.css stock
 CSS stylesheet in all the output HTML pages.
In the following
 example, we not only use base.css, but we also customize most
 of its colors by including a custom stylesheet called
 custom_colors.css:
	1
2
3
4
5
6
7
8
	<book xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml"
 includebasestylesheet="true">
 <headcommon>
 <html:link href="custom_colors.css" rel="stylesheet"
 type="text/css"/>
 </headcommon>
 ...

A sample color customization stylesheet is found in template/custom_colors.css.
What about output formats like PDF, RTF,
 DOCX?
The CSS styles specified in the ebook specification and in the
 source HTML pages are also used when generating output formats like PDF,
 RTF, DOCX, even if these formats are not directly related to HTML and
 CSS.
However in this case, CSS 2.1 support is partial. While there are no
 restrictions related to the use of CSS selectors, only the most basic CSS properties are
 supported. For example, generated content (e.g. :before) and floats are not supported at all.
There are two
 ways to work around this limitation:

 	Use simpler CSS styles when targeting output formats like PDF, RTF,
 DOCX. This is done using @media screen and @media print[6] rules. This is done in primer/css/styles.css:	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
	blockquote.role-warning {
 font-size: 12px;
 background-color: #e1f5fe;
 color: #0288d1;
 padding: 12px 24px 12px 60px;
 margin: 16px 0;
}

blockquote.role-warning:before {
 float: left;
 content: url(star.svg);
 width: 16px;
 height: 16px;
 margin-left: -36px;
}

@media print {
 /* Floating generated content not supported.
 No need to leave room for the admonition icon. */
 blockquote.role-warning {
 padding-left: 24px;
 border-left: solid 5px #0288d1;
 }
}

 	Some features like watermark images or admonition icons are directly
 implemented the XSLT stylesheets which generate XSL-FO[7]. Example:ebookc -p use-note-icon yes book6.ebook out/book6.pdf

ebookc -f webhelp book6.ebook out/book6
Without XSLT stylesheet
 parameter use-note-icon=yes, admonitions in
 out/book6.pdf would have no icons.
Such parameter is
 not needed when generating Web Help (like EPUB, an HTML+CSS-based output
 format) because admonition icons are specified in CSS stylesheet primer/css/styles.css.

Creating links between book
 divisions
An book is specified as an assembly of source HTML pages.
 If you want to reuse some of these HTML pages to author other books, it is
 recommended to avoid creating links (e.g.
) between these
 pages.
Fortunately, there is a simple way to create links between book
 divisions, which is using the ebook:related element. Excerpts
 from primer/book7.ebook:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
	...
<chapter href="ch1.html" xml:id="ch1">
 <related ids="ch1 ch2 a1" relation="See also"/>

 <section href="s1.html">
 <section href="s2.html" samepage="true"/>
 </section>
</chapter>

<chapter href="ch2.html" xml:id="ch2">
 <head>
 <title>“<html:em>Rich</html:em>” title of
 second chapter</title>
 </head>

 <related ids="ch1 ch2 a1" relation="See also"/>
</chapter>

<appendix href="a1.html" xml:id="a1">
 <related ids="ch1 ch2 a1" relation="See also"/>
</appendix>
...

See links automatically generated in first chapter, second
 chapter and first appendix by running for example:
ebookc -f webhelp book7.ebook out/book7
Conditionally excluding some content from the generated
 book
This feature called conditional processing or
 profiling has many uses, the most basic one being to include or
 exclude some content depending on the chosen output format. For example,
 some source HTML pages may contain interactive content (e.g. a feedback
 form) and this interactive content simply cannot be rendered in PDF or
 DOCX.
In order to conditionally exclude some content from the
 generated book, you must first “mark” the conditional sections using
 data-* attributes. Excerpts from primer/book8.ebook:
	1
2
3
4
5
	...
<backmatter data-output-format="docx odt pdf rtf wml">
 <index/>
</backmatter>
...

Excerpts from primer/intro.html:
	1
2
3
4
5
6
	...
<blockquote class="role-tip"
 data-output-format="epub html webhelp">
 <p>This document is also available in PDF ... format.</p>
</blockquote>
...

You may specify one or more conditional processing
 data-* attribute on any element. Choose the attribute names you
 want. Such conditional processing data-* attribute may contain
 one or more values separated by space characters. Choose the attribute
 values you want.
If you generate a single HTML page by
 running:
ebookc book8.ebook out/book8_no_profile.html
the
 marked sections will not be excluded because XMLmind Ebook Compiler
 does not associate any special meaning to attribute
 data-output-format. However if you run:
ebookc -p profile.output-format html book8.ebook out/book8.html
then
 file out/book8.html will not have an index. Option
 "-p profile.output-format html" reads as: unless an element has
 no data-output-format attribute or has a
 data-output-format attribute containing "html",
 exclude this element from the generated content.
If you run:
ebookc -p profile.output-format pdf book8.ebook out/book8.pdf
then
 the introduction will not contain the tip about the availability of the
 document in PDF format.

[1] Preferably valid XHTML5,
 because ebookc anyway generates XHTML5 markup. “Plain HTML”
 cannot be parsed by ebookc.
[2] Requires an
 XSL-FO processor like Apache FOP, RenderX
 XEP, Antenna House Formatter to be installed and registered
 with XMLmind Ebook Compiler (for example, using option
 -foconverter). We'll assume in this manual that you have
 downloaded and installed the distribution of XMLmind Ebook Compiler which
 includes Apache FOP.
[3] Requires XMLmind XSL-FO Converter to be installed and registered
 with XMLmind Ebook Compiler (using option -xfc).
[4] That is, possibly containing the same
 elements as an HTML p (em, kbd,
 img, etc.)
[5] In that matter, the root book element is
 no different from part, chapter,
 appendix, section, etc.
[6] It's also possible to use
 @media XSL_FO_PROCESSOR_NAME rules, where
 XSL_FO_PROCESSOR_NAME is FOP (Apache
 FOP), XEP (RenderX
 XEP), AHF (Antenna House Formatter) or XFC (XMLmind
 XSL-FO Converter).
[7] A standard, intermediate page-layout format which
 is then used by XSL-FO processors like Apache
 FOP or XMLmind XSL-FO Converter to generate PDF, RTF, DOCX,
 etc.

Chapter 3. Getting started
Installing XMLmind Ebook Compiler
How to install XMLmind
 Ebook Compiler is explained in Chapter 5. Installation.
Writing
 an ebook specification
You have learned in Chapter 2. Primer:

 	What is an ebook specification. The corresponding reference is found
 in Chapter 7. Reference of ebook elements.

 	What an ebook page may contain. The corresponding reference is found
 in Chapter 6. Content of a source HTML page.

You'll find a template for your ebook specification in ebookc_install_dir/doc/manual/template/template.ebook.
 The recommended extension for these files is
 ".ebook".
Writing a CSS stylesheet for your
 ebooks
If you want your ebook to look good, the simplest is to set
 attribute includebasestylesheet
 of element book to
 "true" as explained in Leveraging base.css,
 the stock CSS stylesheet.
Alternatively, you may want to
 use a custom CSS stylesheet developed from scratch, starting from the
 template found in ebookc_install_dir/doc/manual/template/skeleton.css.
 In this case, as explained in Nicely
 formatted books, make sure to add this kind of link to the headcommon
 element of your root book element:
	1
2
3
4
	<headcommon>
 <html:link href="my_custom_stylesheet.css" rel="stylesheet"
 type="text/css"/>
</headcommon>

Compiling an ebook specification
An ebook
 specification is compiled using a command-line tool called
 ebookc.
 Run ebookc_install_dir/bin/ebookc.bat on Windows and
 ebookc_install_dir/bin/ebookc on the Mac and on
 Linux.
Example, convert this manual to EPUB:
C:\ebookc_1_11_0\docsrc\manual> ..\..\bin\ebookc.bat manual.ebook out\manual.epub
Example,
 convert this manual to Web Help (output directory being
 "out\manual_webhelp\"):
C:\ebookc_1_11_0\docsrc\manual> ..\..\bin\ebookc.bat -f webhelp¬
 manual.ebook out\manual_webhelp
Example, convert this manual to DOCX
 using a copy of XMLmind XSL-FO Converter installed in
 "C:\xfc\":
C:\ebookc_1_11_0\docsrc\manual> ..\..\bin\ebookc.bat¬
 -xfc C:\xfc\bin\fo2rtf.bat¬
 manual.ebook out\manual.docx
XMLmind
 XSL-FO Converter Evaluation Edition (download page) generates output containing
 random duplicate letters. This makes this edition useless for
 any purpose other than evaluating XMLmind XSL-FO Converter. Of course,
 this does not happen with XMLmind XSL-FO Converter Professional
 Edition!

Example, convert this manual
 to PDF using a copy of RenderX XEP installed in "C:\xep\":
C:\ebookc_1_11_0\docsrc\manual> ..\..\bin\ebookc.bat¬
 -xep C:\xep\xep.bat¬
 manual.ebook out\manual.pdf
To avoid
 specifying options -xep and -xfc each time you run
 ebookc, the simplest if to create once for all an ebookc.options
 file in the
 ebookc user preferences directory. This directory is:

 	$HOME/.ebookc/ on Linux.

 	$HOME/Library/Application
 Support/XMLmind/ebookc/ on the Mac.

 	%APPDATA%\XMLmind\ebookc\ on Windows.
 Example:
 C:\Users\john\AppData\Roaming\XMLmind\ebookc\.

Your ebookc.options file would contain:
-xep C:\xep\xep.bat
-xfc C:\xfc\bin\fo2rtf.bat

What if
 you just want to quickly experiment with XMLmind Ebook Compiler?
The
 simplest is to download and install XMLmind XML
 Editor Personal Edition
 from http://www.xmlmind.com/xmleditor/download.shtml.
You
 can then open this document —"XMLmind Ebook Compiler Manual",
 an ebook specification found in
 ebookc_install_dir/docsrc/manual/manual.ebook—
 in XMLmind XML Editor and use menu Ebook > Convert Document
 to convert it to any format you want.
In fact, XMLmind XML Editor
 fully supports the creation of ebook specifications and ebook pages. This
 support is as extensive as the DITA or DocBook support in XMLmind XML
 Editor.
Figure 3-1. This manual, manual.ebook,
 opened in XMLmind XML Editor[image: This manual, manual.ebook, opened in XMLmind XML Editor]
Chapter 4. Handy features
Table of Contents
	4.1. Markdown support	4.1.1. Supported Markdown extensions

	4.2. Automatic resource management
	4.3. Conditional processing
	4.4. Transclusion

4.1. Markdown support

In addition to HTML, an ebook page may be written in Markdown. However for this to work, the file extension of the page written in Markdown must be md, markdown, mdown, mkdn, mdwn, mkd, rmd, text or txt.

The encoding of a Markdown file is, by default, the system encoding (e.g. window-1252 on a Western PC).

If you want to explicitly specify the encoding of a Markdown file, please save your file with a UTF-8 or UTF-16 BOM (Byte Order Mark) or add an encoding directive inside a comment anywhere at the beginning of your file. Example:

<!-- -*- coding: iso-8859-1 -*- -->

Heading
=======

Sub-heading

Paragraphs are separated
by a blank line.

The above example should work fine because ebookc understands the GNU Emacs file variable called coding.

Out of the box, the Markdown parser is configured to support the commonmark 0.28 “Markdown dialect” plus all the following extensions:

	Abbreviations

	Admonitions

	Attributes

	Definition lists

	Footnotes

	Ins

	Strikethrough and subscript

	Media tags

	Superscript

	Tables

	Typographic characters

	YAML front matter

However, thanks to the flexmark-java software component used by ebookc to implement Markdown support, all this can be configured by passing some load.markdown.XXX options to ebookc.

For example, pass

	-p load.markdown.profile GITHUB

	-p load.markdown.less-extensions true

	-p load.markdown.gfm-tasklist true

to ebookc in order to parse the Github-flavored Markdown dialect and to enable a minimal set of extensions plus the task lists syntax extension.

Supported “Markdown dialects” are COMMONMARK, COMMONMARK_0_26, COMMONMARK_0_27, COMMONMARK_0_28, FIXED_INDENT, KRAMDOWN, MARKDOWN, GITHUB_DOC, GITHUB, MULTI_MARKDOWN, PEGDOWN, PEGDOWN_STRICT. See Markdown Processor Emulation.

Parameter -p load.markdown.less-extensions true is a shorthand parameter instructing ebookc to reset its extensions to the following minimal set of extensions:

	Strikethrough and subscript

	Superscript

	Tables

	YAML front matter

The above minimal set of extensions corresponds to what’s described in the Markdown Cheatsheet.

All supported Markdown syntax extensions are documented in Section 4.1.1. Supported Markdown extensions.

4.1.1. Supported Markdown extensions

Abbreviations

Converts plain text abbreviations (e.g. IBM) to <abbr> elements.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.abbreviation false to ebookc.

Example:

The HTML specification is maintained by the W3C.

*[HTML]: Hyper Text Markup Language
*[W3C]: World Wide Web Consortium

is converted to:

<p>The <abbr title="Hyper Text Markup Language">HTML</abbr> specification
is maintained by the <abbr title="World Wide Web Consortium">W3C</abbr>.</p>

which is rendered as:

The HTML specification is maintained by the W3C.

Admonitions

Syntax for creating admonitions such as notes, tips, warnings, etc.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.admonition false to ebookc.

After the "!!!" tag, the admonition type must be one of "note", "attention","caution", "danger", "fastpath", "important", "notice", "remember", "restriction", "tip","trouble", "warning".

A note example not having a title:

!!! note ""
 Support is limited to bug reports.

is converted to:

<blockquote class="role-note">
 <p>Support is limited to bug reports.</p>
</blockquote>

which is rendered as:

Support is limited to bug reports.

A tip example having a title:

!!! tip "How do you do a hard reboot on an iPad?"
 Press and hold both the **Home** and **Power** buttons
 until your iPad® reboots.

 You can release both buttons when you see Apple® logo.

is converted to:

<blockquote class="role-tip">
 <h4 class="role-admonition-title">How do you do a hard reboot on an iPad?</h4>
 <p>Press and hold both the Home and Power
 buttons until your iPad® reboots.</p>
 <p>You can release both buttons when you see Apple® logo.</p>
</blockquote>

which is rendered as:

How do you do a hard reboot on an iPad?

Press and hold both the Home and Power buttons until your iPad® reboots.

You can release both buttons when you see Apple® logo.

Attributes

Syntax for adding attributes to the generated HTML elements:

attributes -> '{' attribute_spec (S attribute_spec)* '}'

attribute_spec -> name=value
 | name='value'
 | name="value"
 | #id
 |.class

An easy rule to remember

If an {...} specification is separated by space characters from some plain text (e.g. some plain text {...}) then the attributes are added to the parent element of the text.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.attributes false to ebookc.

Example:

The *circumference { .first-term }* is the length of one circuit along the
circle, or the distance around the circle. {#circumference title="See
https://en.wikipedia.org/wiki/Circle"}

is converted to:

<p id="circumference" title="See https://en.wikipedia.org/wiki/Circle">The <em
class="first-term">circumference the length of one circuit along the
circle, or the distance around the circle.</p>

which is rendered as:

The circumference is the length of one circuit along the circle, or the distance around the circle.

Pitfall

By default, heading IDs are not “rendered” in HTML (which is somewhat counterintuitive). You must pass

-p load.markdown.renderer.RENDER_HEADER_ID true

to ebookc get them “rendered”.

Automatic links

Turns plain text URLs and email addresses into elements.

This Markdown syntax extension is disabled by default. In order to enable it, pass parameter -p load.markdown.autolink true to ebookc.

Example:

Please send your bug reports to ebookc-support@xmlmind.com, a public,
moderated, mailing list. More information in
http://www.xmlmind.com/ebookc/support.html.

is converted to:

<p>Please send your bug reports to ebookc-support@xmlmind.com, a
public, moderated, mailing list. More information in <a
href="http://www.xmlmind.com/ebookc/support.html"
>http://www.xmlmind.com/ebookc/support.html.</p>

which is rendered as:

Please send your bug reports to ebookc-support@xmlmind.com, a public, moderated, mailing list. More information in http://www.xmlmind.com/ebookc/support.html.

Definition lists

Syntax for creating definition lists, that is <dl>, <dt> and <dd> elements.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.definition false to ebookc.

Example:

Glossary:

LED
: Light emitting diode.

ABS
: Antilock braking system.

ESC
ESP
: Electronic stability control, also known as Electronic Stability Program.

: On motorcycles, ESC/ESP is called *Traction Control*.

 > Ducati was one of the first to introduce a true competition-level
 > traction control system (**DTC**) on a production motorcycle.

EBA
: Emergency brake assist.

is converted to:

<p>Glossary:</p>
<dl>
 <dt>LED</dt>
 <dd><p>Light emitting diode.</p></dd>

 <dt>ABS</dt>
 <dd><p>Antilock braking system.</p></dd>

 <dt>ESC</dt>
 <dt>ESP</dt>
 <dd><p>Electronic stability control, also known as Electronic Stability
 Program.</p></dd>
 <dd><p>On motorcycles, ESC/ESP is called Traction
 Control.</p>
 <blockquote><p>Ducati was one of the first to introduce a true
 competition-level traction control system (DTC)
 on a production motorcycle.</p></blockquote></dd>

 <dt>EBA</dt>
 <dd><p>Emergency brake assist.</p></dd>
</dl>

which is rendered as:

Glossary:

	LED

	
Light emitting diode.

	ABS

	
Antilock braking system.

	ESC

	ESP

	
Electronic stability control, also known as Electronic Stability Program.

	
On motorcycles, ESC/ESP is called Traction Control.

Ducati was one of the first to introduce a true competition-level traction control system (DTC) on a production motorcycle.

	EBA

	
Emergency brake assist.

Remember that:

	The leading ":" character of a definition must be followed by one or more space characters.

	Terms must be separated from the previous definition by a blank line.

	A blank line is not allowed between two consecutive terms.

	A blank line is allowed before a definition.

Footnotes

Syntax for creating footnotes and footnote references.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.footnotes false to ebookc.

Example:

The differences between the programming languages C++[^1] and Java can be
traced to their heritage.

[^1]: The C++ Programming Language by Bjarne Stroustrup.

C++[^1] was designed for systems and applications programming, extending the
procedural programming language C[^2].

[^2]: The C Programming Language by Brian Kernighan and Dennis Ritchie.

 Originally published in 1978.

is converted to:

<p>The differences between the programming languages
C++ and Java can be traced to
their heritage.</p>

<div class="role-footnote" id="__FN1">
 <p>The C++ Programming Language by Bjarne Stroustrup.</p>
</div>

<p>C++<aclass="role-footnote-ref" href="#__FN1"> was designed for systems
and applications programming, extending the procedural programming language
C.</p>

<div class="role-footnote" id="__FN2">
 <p>The C Programming Language by Brian Kernighan and Dennis
 Ritchie.</p>
 <p>Originally published in 1978.</p>
</div>

which is rendered as:

The differences between the programming languages C++[1] and Java can be traced to their heritage.

C++[1] was designed for systems and applications programming, extending the procedural programming language C[2].

Ins

Converts tagged text "++something new++" to <ins>something new</ins>, which is rendered as: something new

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.ins false to ebookc.

Strikethrough and subscript

Converts

	tagged text "~~something deleted~~" to something deleted, which is rendered as: something deleted

	tagged text "~a subscript~" to <sub>a subscript<sub/>, which is rendered as: a subscript

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.gfm-strikethrough false to ebookc.

Superscript

Converts tagged text "^a superscript^" to ^{a superscript}, which is rendered as: a superscript

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.superscript false to ebookc.

Media tags

Converts prefixed links to audio, embed, picture and video HTML5 elements.

	!A[Text](links) - audio. Links is one or more links separated by character “|”.

	!E[Text](links) - embed.

	!P[Text](links) - picture.

	!V[Text](links) - video.

Audio example:

Audio example: !A[Falcon calling](media/falcon.mp3|media/falcon.wav).

is converted to:

<p>Audio example: <audio controls="" title="Falcon calling">
 <source src="media/falcon.mp3" type="audio/mpeg">
 <source src="media/falcon.wav" type="audio/wav">
 Your browser does not support the audio element.
</audio>.</p>

which is rendered as:

Audio example: Your browser does not support the audio element..

Video example:

Video example: !V[Funny big bunny](media/bbb.mp4).

is converted to:

<p>Video example: <video controls="" title="Funny big bunny">
 <source src="media/bbb.mp4" type="video/mp4">
 Your browser does not support the video element.
</video>.</p>

which is rendered as:

Video example: Your browser does not support the video element..

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.media-tags false to ebookc.

Tables

Converts pipe "|" delimited text to <table> elements.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.tables false to ebookc.

Simple table example:

Header 1	Header 2	Header 3
Cell 1,1	Cell 1,2	Cell 1,3
Cell 2,1	Cell 2,2	Cell 2,3

is converted to:

<table border="1">
 <thead>
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 <th>Header 3</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Cell 1,1</td>
 <td>Cell 1,2</td>
 <td>Cell 1,3</td>
 </tr>
 <tr>
 <td>Cell 2,1</td>
 <td>Cell 2,2</td>
 <td>Cell 2,3</td>
 </tr>
 </tbody>
</table>

which is rendered as:

	Header 1	Header 2	Header 3

	Cell 1,1	Cell 1,2	Cell 1,3

	Cell 2,1	Cell 2,2	Cell 2,3

Table example having centered and right-aligned columns:

Header 1	Header 2	Table Header 3
Cell 1,1	Table cell 1,2	Cell 1,3
Cell 2,1	Cell 2,2	Cell 2,3

is converted to:

<table border="1">
 <thead>
 <tr>
 <th>Header 1</th>
 <th style="text-align: center;">Header 2</th>
 <th style="text-align: right;">Table Header 3</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Cell 1,1</td>
 <td style="text-align: center;">Table cell 1,2</td>
 <td style="text-align: right;">Cell 1,3</td>
 </tr>
 <tr>
 <td>Cell 2,1</td>
 <td style="text-align: center;">Cell 2,2</td>
 <td style="text-align: right;">Cell 2,3</td>
 </tr>
 </tbody>
</table>

which is rendered as:

	Header 1	Header 2	Table Header 3

	Cell 1,1	Table cell 1,2	Cell 1,3

	Cell 2,1	Cell 2,2	Cell 2,3

Table example having cells spanning several columns and a caption:

Header 1	Header 2	Header 3
Cell 1,1 + 1,2		Cell 1,3
Cell 2,1 + 2,2 + 2,3		
Cell 3,1	Cell 3,2	Cell 3,3
[Table caption here]

is converted to:

<table border="1">
 <caption>Table caption here</caption>
 <thead>
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 <th>Header 3</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td colspan="2">Cell 1,1 + 1,2</td>
 <td>Cell 1,3</td>
 </tr>
 <tr>
 <td colspan="3">Cell 2,1 + 2,2 + 2,3</td>
 </tr>
 <tr>
 <td>Cell 3,1</td>
 <td>Cell 3,2</td>
 <td>Cell 3,3</td>
 </tr>
 </tbody>
</table>

which is rendered as:

Table 4-1. Table caption here

	Header 1	Header 2	Header 3

	Cell 1,1 + 1,2	Cell 1,3

	Cell 2,1 + 2,2 + 2,3

	Cell 3,1	Cell 3,2	Cell 3,3

Typographic characters

Converts

	"'" to apostrophe ’, which is rendered as in word: "don’t"

	"..." and ". . ." to ellipsis …, which are both rendered as: …

	"--" to en dash –, which is rendered as: –

	"---" to em dash —, which is rendered as: —

	single quoted 'some text' to ‘some text’, which is rendered as: ‘some text’

	double quoted "some text" to “some text”, which is rendered as: “some text”

	double angle quoted <<some text>> to «some text», which is rendered as: «some text»

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.typographic false to ebookc.

If you don’t want some of the above plain text sequences to be processed, specify:

	-p load.markdown.typographic.ENABLE_QUOTES false

	Do not process single quotes, double quotes, double angle quotes.

	-p load.markdown.typographic.ENABLE_SMARTS false

	Do not process "'", "...", ". . .", "--", "---".

YAML front matter

Syntax for adding metadata to the generated HTML document, that is, for adding <head>/<title> and/or <head>/<meta> elements.

These metadata are specified by key/value pairs written using a subset of the YAML (see also http://yaml.org/) syntax.

This Markdown syntax extension is enabled by default. In order to disable it, pass parameter -p load.markdown.yaml-front-matter false to ebookc.

Example:

title: The C Programming Language
author:
 - Brian W. Kernighan
 - Dennis Ritchie
description: |
 One of the best-selling programming books published
 in the last fifty years, "K&R" has been called everything
 from the "bible" to "a landmark in computer science" and
 it has influenced generations of programmers.
date: 1988-03-22

is converted to:

<head>
 <title>The C Programming Language</title>
 <meta content="Brian W. Kernighan" name="author" />
 <meta content="Dennis Ritchie" name="author" />
 <meta content="One of the best-selling programming books published
 in the last fifty years, "K&R" has been called
 everything from the "bible" to
 "a landmark in computer science" and it has
 influenced generations of programmers." name="description" />
 <meta content="1988-03-22" name="date" />
</head>

Other extensions

The following Markdown syntax extensions are also supported:

	anchorlink

	aside

	emoji

	enumerated-reference

	gfm-issues

	gfm-tasklist

	gfm-users

	macros

	toc

	wikilink

	youtube-embedded

All the above extensions are disabled by default. In order to enable an extension, pass parameter -p load.markdown.EXTENSION_NAME true to ebookc. For example: -p load.markdown.emoji true

Any extension listed in this section may be parameterized by passing parameter -p load.markdown.EXTENSION_NAME.PARAMETER_NAME PARAMETER_VALUE[3] to ebookc. Examples:

	-p load.markdown.emoji.ATTR_IMAGE_SIZE 16

	-p load.markdown.emoji.ATTR_ALIGN ""

	-p load.markdown.emoji.USE_IMAGE_TYPE IMAGE_ONLY

	-p load.markdown.emoji.USE_SHORTCUT_TYPE ANY_GITHUB_PREFERRED

With the above emoji parameters, ":smile:" is rendered as: [image: emoji people:smile]

More generally, the Markdown parser (pseudo EXTENSION_NAME is "parser") and the HTML renderer (pseudo EXTENSION_NAME is "renderer") may also be parameterized this way. For example, automatically generate an ID for all headings not already having an ID and “render” all heading IDs in HTML[4]:

-p load.markdown.renderer.GENERATE_HEADER_ID true

-p load.markdown.renderer.RENDER_HEADER_ID true.

More information about extensions and their parameters in Extensions (flexmark-java is the software component used by ebookc to parse Markdown and convert it to HTML).

[1] The C++ Programming Language by Bjarne Stroustrup.
[2] The C Programming Language by Brian Kernighan and Dennis Ritchie.
Originally published in 1978.

[3] The only types supported for PARAMETER_VALUE are: string, boolean (true or false), integer and any enumerated type.
[4] By default, heading IDs are not “rendered” in HTML, which is somewhat counterintuitive.

4.2. Automatic resource management
XMLmind Ebook Compiler automatically copies all the resources
 referenced by the ebook specification and the input HTML pages to the output
 directory in order to create a self-contained deliverable. Creating
 self-contained deliverables is generally desirable and for some output
 formats, like EPUB, this is really required.
For example, if you run
 (single-page HTML output format):
ebookc doc.ebook out/doc.html
all
 the resources of doc.ebook are copied to
 out/doc_files/.
Other example, if you run:
ebookc -f webhelp doc.ebook out/webhelp/
all
 the resources of doc.ebook are copied to
 out/webhelp/_res/.
What is a resource?
By
 default, XMLmind Ebook Compiler considers that any file [1]
 referenced by the ebook specification or an input HTML page using a
 relative URI is a resource. This is generally the case of images,
 audio and video files, CSS stylesheets, scripts files referenced by the
 ebook specification and the input HTML pages.
In this example, image
 "cc-by-sa.png" is obviously a resource and file
 "creativecommons.html" not being an input HTML page, is also
 considered to be a resource:
	1
2
3
4
5
	<p>All the above tutorials are licensed under the
<img src="cc-by-sa.png"
alt="CC BY-SA"/>Creative Commons License,
which means that everyone is welcome to distribute, modify, translate, etc,
any of them.</p>

How to specify "not a resource; do not copy
 it and keep its relative URI as is"?
The automatic resource
 management of ebookc may be turned off globally by setting option
 proc.ignoreresources to "true".
If you
 want to specify that only some of the resources of an ebook are external and
 as such, should not be processed by ebookc, please use

 	value "external-resource"
 for standard attribute rel (HTML link elements have this
 attribute);

 	proprietary attribute data-external-resource for
 elements like img which do not have attribute
 rel.

Example:
	1
2
3
4
5
6
	<p>All the above tutorials are licensed under the
<a href="creativecommons.html"
rel="external-resource"><img src="cc-by-sa.png" alt="CC BY-SA"
data-external-resource=""/>Creative Commons License,
which means that everyone is welcome to distribute, modify, translate, etc,
any of them.</p>

In the above example, files
 "cc-by-sa.png" and "creativecommons.html" are not
 processed as resources.
Option
 externalresourcebase may be used to specify an absolute or
 relative URI to be prepended to external resources having a relative URI.
 Example:
 -p proc.externalresourcebase "../../samples/".

How
 to specify "this is a resource too; copy it to the output
 directory"?
By default, XMLmind Ebook Compiler considers that any
 file referenced by the ebook specification or an input HTML page using an
 absolute URI is not a resource. Example:
	1
2
3
4
5
6
	<p>All the above tutorials are licensed under the

<img src="https://creativecommons.org/cc-by-sa.png"
alt="CC BY-SA"/>Creative Commons License,
which means that everyone is welcome to distribute, modify, translate, etc,
any of them.</p>

In the above example, files
 "https://creativecommons.org/creativecommons.html" and
 "https://creativecommons.org/cc-by-sa.png" are not processed as
 resources.
If you want to specify that some files having absolute URIs
 are in fact resources and as such, should be processed by
 ebookc, please use

 	value "resource" for standard attribute rel (HTML link elements have this
 attribute);

 	proprietary attribute data-resource for elements like
 img which do not have attribute rel.

Example:
	1
2
3
4
5
6
7
	<p>All the above tutorials are licensed under the
<a href="https://creativecommons.org/creativecommons.html"
rel="resource">
<img src="https://creativecommons.org/cc-by-sa.png"
data-resource="" alt="CC BY-SA"/>Creative Commons License,
which means that everyone is welcome to distribute, modify, translate, etc,
any of them.</p>

In the above example, files
 "https://creativecommons.org/creativecommons.html" and
 "https://creativecommons.org/cc-by-sa.png" are processed as
 resources.
Sub-resources
In the following example, files
 "styles.css", "creativecommons.html" and
 "cc-by-sa.png" are automatically processed as
 resources:
	1
2
3
4
5
6
7
8
9
10
11
	...
<head>
 ...
 <link href="css/styles.css" rel="stylesheet" type="text/css" />
</head>
...
<p>All the above tutorials are licensed under the
<img src="cc-by-sa.png"
alt="CC BY-SA"/>Creative Commons License,
which means that everyone is welcome to distribute, modify, translate, etc,
any of them.</p>

Moreover, if file
 "creativecommons.html" contains XHTML —that is, can be parsed
 by XMLmind Ebook Compiler— its resources are processed too as if
 "creativecommons.html" were an input HTML page.
This is
 also the case for resource "styles.css". The resources found in
 a CSS stylesheet (e.g. file "texture.png" in
 "background-image: url(images/texture.png);" or file
 "core_styles.css" in "@import
 url(lib/core_styles.css);") are automatically detected and processed
 by XMLmind Ebook Compiler.
However, if she/he finds this clearer, the
 ebook author may also explicitly specify the sub-resources of CSS
 stylesheets using extra link elements in the headcommon of the
 ebook specification or in the head of an input HTML page.
 Example:
	1
2
3
4
5
6
7
8
9
10
11
12
	...
<head>
 ...
 <link href="css/images/" rel="resource" type="inode/directory" />
 <link href="css/styles.css" rel="stylesheet" type="text/css" />
</head>
...
<p>All the above tutorials are licensed under the
<img src="cc-by-sa.png"
alt="CC BY-SA"/>Creative Commons License,
which means that everyone is welcome to distribute, modify, translate, etc,
any of them.</p>

Notice attribute rel="resource" which
 makes even clearer the purpose of this link. Also notice
 type="inode/directory"
 which is needed because "css/images/" is a folder and not a
 simple file.

[1] Other than an input HTML page of course.

4.3. Conditional processing
XMLmind Ebook Compiler can conditionally exclude some contents found in the ebook specification or in the input HTML
 pages. To put this feature into use, the ebook author must:

 	Specify one or more data-* attributes on the elements
 to be conditionally excluded. Examples:
 data-edition="complete", data-output-format="docx odt
 pdf rtf wml".These data-* attributes are often called
 profiling attributes because they are used to define several
 profiles for the same document.
It's up to the ebook author to
 choose the names and allowed values for the profiling
 attributes.
The ebook author may allow only a single value for a
 given profiling attribute. Example: attribute data-edition
 may contain only a single value, one of "complete" or
 "abridged".
Or, on the contrary, the ebook author
 may allow a given profiling attribute to contain several values
 separated by space characters. Example: attribute
 data-output-format may contain one or more of
 "docx", "epub", "frameset",
 "html ", "odt", "pdf",
 "rtf", "webhelp", "wml".

 	Pass one or more profile.* parameters to the
 ebookc command-line option. These profile.*
 parameters must match the chosen profiling attributes. Example:
 -p profile.edition abridged
 -p profile.output-format pdf.Note that unless you pass a
 profile.* parameter, the corresponding data-*
 attribute is not given any special meaning by XMLmind Ebook Compiler.
 For example, without -p profile.output-format VALUE,
 attribute data-output-format is considered to be just an
 ordinary attribute.

How some elements are conditionally excluded by XMLmind Ebook
 Compiler is best explained by an example:
Example 4-1. Example of conditional
 processing	1
2
3
4
5
6
7
8
9
10
	<p>See YouTube demo:</p>

<p data-edition="complete" data-output-format="epub frameset html webhelp">
<iframe src="https://www.youtube.com/embed/6MgZBZ4XHzU"
height="360" width="640"></iframe></p>

<p data-edition="complete" data-output-format="docx odt pdf rtf wml">

<a href="https://youtu.be/6MgZBZ4XHzU"
target="_blank">https://youtu.be/6MgZBZ4XHzU.</p>

See
 YouTube demo:

[image: YouType Play icon] https://youtu.be/6MgZBZ4XHzU.
For an
 element to be excluded, suffice for a single profiling attribute to
 be “excluded”. A profiling attribute data-X is
 “excluded” if none of the values it contains matches a value contained in
 the profile.X parameter passed to
 ebookc.
For example, with
 -p profile.edition complete
 -p profile.output-format pdf, the embedded video
	1
2
3
	<p data-edition="complete" data-output-format="epub frameset html webhelp">
<iframe src="https://www.youtube.com/embed/6MgZBZ4XHzU"
height="360" width="640"></iframe></p>

is excluded
 because despite the fact that data-edition="complete" is
 “included”, data-output-format="epub frameset html webhelp" is
 “excluded”.
Other examples, if you pass ebookc

 	no profile.* parameter at all, the above example will
 contain both the embedded video and the YouTube link to the video.

 	-p profile.edition abridged, the above example will
 contain neither the embedded video nor the YouTube link to the
 video.

 	-p profile.edition complete, the above example will
 contain both the embedded video and the YouTube link to the video.

 	-p profile.output-format epub, the above example will
 contain just the embedded video.

 	-p profile.output-format pdf, the above example will
 contain just the YouTube link to the video.

 	-p profile.edition abridged
 -p profile.output-format pdf, the above example will
 contain neither the embedded video nor the YouTube link to the
 video.

 	-p profile.edition complete
 -p profile.output-format pdf, the above example will contain just
 the YouTube link to the video.

 	-p profile.edition complete
 -p profile.output-format "epub pdf", the above example will
 contain both the embedded video and the YouTube link to the video.

4.4. Transclusion
XMLmind Ebook Compiler has good support for
 transclusion, that is the ability to include contents found in an
 input HTML page into another input HTML page. This feature is implemented
 using a standard mechanism called XInclude.
Example,
 "page1.html" contains paragraph having
 id="notice":
	1
2
	<p id="notice" class="important">Interest rates are subject
to fluctuation without notice.</p>

Because this paragraph has an
 id, it's possible to include it in
 "page2.html":
	1
2
3
4
5
6
	<p>Paragraph found in page2.html.</p>

<xi:include href="page1.html" xpointer="notice"
 xmlns:xi="http://www.w3.org/2001/XInclude" />[1]

<p>Other paragraph found in page2.html.</p>

The corresponding output
 HTML page will then contain:
	1
2
3
4
5
6
	<p>Paragraph found in page2.html.</p>

<p id="notice" class="important">Interest rates are subject
to fluctuation without notice.</p>

<p>Other paragraph found in page2.html.</p>

Note
 that transclusion works fine not only between two input HTML pages, but
 also:

 	within the same input HTML page (see example below),

 	between two ebook specifications,

 	within the same ebook specification.

However transclusion does not work between an input HTML page and
 an ebook specification.
Example 4-2. Transclusion works fine
 within the same input HTML page	1
2
3
4
5
6
7
	<p id="notice" class="important">Interest rates are subject
to fluctuation without notice.</p>

... ELSEWHERE in page1.html ...

<xi:include href="" xpointer="notice"
 xmlns:xi="http://www.w3.org/2001/XInclude" />

Notice
 href="" to refer to the same file.
Transclusion
 is most often used between the input HTML pages and a “utility HTML page”
 which is not an input HTML page but which contains useful
 “snippets”.
Example, excerpts from
 "snippets.html":
	1
2
3
4
5
6
7
8
	
 XMLmind Ebook Compiler.

 XMLmind XML Editor.

 <a href="http://www.xmlmind.com/" id="xmlmind"
 target="_blank">XMLmind.

Now, including snippets in an input HTML page:
	1
2
3
4
5
6
7
8
9
	<p><xi:include href="snippets.html" xpointer="ebookc"
xmlns:xi="http://www.w3.org/2001/XInclude" /> is free, open source software
developed by <xi:include href="snippets.html" xpointer="xmlmind"
xmlns:xi="http://www.w3.org/2001/XInclude" />.</p>

<p><xi:include href="snippets.html" xpointer="xxe"
xmlns:xi="http://www.w3.org/2001/XInclude" /> is a commercial product
developed by <xi:include href="snippets.html" xpointer="xmlmind"
xmlns:xi="http://www.w3.org/2001/XInclude" />.</p>

[1] Creating xi:include elements
 by hand is tedious and error prone. It's strongly recommended to use an
 XInclude-enabled editor like XMLmind XML Editor to do that. With XMLmind XML Editor, creating an
 xi:include element is as easy as copying a reference
 to an element (Ctrl+Shift-C) from one page and then pasting it
 (Ctrl-V) into another page.

Part II. Reference
Table of Contents
	5. Installation
	6. Content of a source HTML page	6.1. [image: HTML5 logo]
 Valid XHTML5
	6.2. Headings
	6.3. Examples
	6.4. Equations
	6.5. Admonitions
	6.6. Footnotes
	6.7. Cross-references
	6.8. Index terms

	7. Reference of ebook elements	7.1. Element appendices
	7.2. Element appendix
	7.3. Element backmatter
	7.4. Element body
	7.5. Element book
	7.6. Element chapter
	7.7. Element content
	7.8. Element frontmatter
	7.9. Element head
	7.10. Element headcommon
	7.11. Element index
	7.12. Element loe
	7.13. Element lof
	7.14. Element lot
	7.15. Element lox
	7.16. Element part
	7.17. Element related
	7.18. Element section
	7.19. Element title
	7.20. Element toc
	7.21. Common attributes

	8. How it works
	9. The ebookc command-line utility
	10. XSLT stylesheets parameters	10.1. Parameters of the XSLT stylesheets used to convert an ebook
 specification to EPUB
	10.2. Parameters of the XSLT stylesheets used to convert an ebook
 specification to Web Help
	10.3. Parameters of the XSLT stylesheets used to convert an ebook
 specification to XSL-FO	10.3.1. Specifying a header or a footer

Chapter 5. Installation
System requirements
Make sure to have a Java™ 1.8+ runtime
 installed on your machine. To check this, please open a command window and
 type "java -version" followed by Enter. You should
 get something looking like this:
C:\> java -version
openjdk version "23.0.1" 2024-10-15
OpenJDK Runtime Environment (build 23.0.1+11-39)
OpenJDK 64-Bit Server VM (build 23.0.1+11-39, mixed mode)
Installation
Simply
 unzip ebookc-X_Y_Z.zip in any directory.
After
 that, you can run command-line utility ebookc by simply executing
 ebookc_install_dir/bin/ebookc.bat
 (ebookc_install_dir/bin/ebookc on the Mac and on
 Linux).
C:\> mkdir XMLmind
C:\> cd XMLmind
C:\XMLmind> unzip ebookc-1_11_0.zip
C:\XMLmind> dir ebookc-1_11_0
... <DIR> bin
... <DIR> doc
... <DIR> docsrc
... <DIR> LEGAL
...
C:\XMLmind> ebookc-1_11_0\bin\ebookc.bat
ebookc: ERROR: Usage: ebookc [option]* in_ebook_file out_file_or_directory
...
Contents of the installation directory

 	bin/, bin/ebookc,
 bin/ebookc.bat

 	Contains the ebookc command-line utility. Use shell script
 ebookc on Linux and on the Mac. Use ebookc.bat
 on Windows.

 	doc/, doc/index.html

 	Contains the documentation of XMLmind Ebook Compiler.

 	docsrc/, docsrc/manual.xml

 	Contains the documentation of XMLmind Ebook Compiler in
 ebookc format. File docsrc/manual.ebook
 contains an ebook specification. You may want to use this sample ebook
 specification to experiment with the ebookc command-line
 utility.

 	LEGAL/, LEGAL.txt

 	Contains legal information about XMLmind Ebook Compiler and about
 third-party components used in XMLmind Ebook Compiler.

 	lib/*.jar

 	All the Java™ class libraries needed to run XMLmind Ebook Compiler.
 For example, lib/ebookc.jar contain the code of XMLmind
 Ebook Compiler.

 	plus/

 	This directory is present only in the case of the
 ebookc-X_Y_Z-plus-fop.zip distribution. It contains
 most recent Apache FOP (including hyphenation and MathML
 support). This
 XSL-FO processor is automatically declared and thus, ready to be used to
 generate PDF or PostScript.

 	schema/

 	Contains a W3C XML schema and a Schematron
 which may be used to check an ebook specification for validity. File
 schema/catalog.xml contains an XML
 catalog which points to
 these schemas.

 	src/, src/build.xml

 	Contains the Java™ source code of XMLmind Ebook Compiler.
 src/build.xml is an ant build file which allows to rebuild
 lib/ebookc.jar.

 	whc_template/

 	Contains the template directory of XMLmind
 Web Help Compiler.

 	xsl/

 	Contains the XSLT 2.0
 stylesheets used to convert ebook specifications to a variety of
 formats.

Chapter 6. Content of a source HTML page
Table of Contents
	6.1. [image: HTML5 logo]
 Valid XHTML5
	6.2. Headings
	6.3. Examples
	6.4. Equations
	6.5. Admonitions
	6.6. Footnotes
	6.7. Cross-references
	6.8. Index terms

6.1. [image: HTML5 logo]
 Valid XHTML5
Your source HTML pages must contain valid[1] XHTML
 (“plain HTML” cannot be parsed by ebookc) and
 preferably valid
 XHTML5, because ebookc anyway generates [image: HTML5 logo]
 XHTML5 markup.
The html root element must have 1
 head and 1 body child elements. The
 head child element must have 1 title child
 element.
	1
2
3
4
5
6
7
8
9
10
	<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="UTF-8" />
 <title>...</title>
 </head>
 <body>
 ...
 </body>
</html>

If
 you plan to use XMLmind XML Editor as your ebook authoring tool, do not forget to add attribute
 class="role-ebook-page" to the
 html root element of your source HTML pages. XMLmind XHTML
 Editor detects this attribute and this will cause the editor to replace its
 stock "XHTML" menus and toolbars by extended "XHTML" menus and
 toolbars.

[1] Note that the validity of the source HTML pages is
 currently not checked by ebookc. It's only the validity of the
 ebook specification which is checked against W3C XML Schema
 ebookc_install_dir/schema/ebook.xsd.

6.2. Headings
You may use headings (h1, h2,
 h3, etc) normally, without worrying about the role as a book
 division (chapter, section, etc) that will be given to your input HTML
 page.
By default, book attribute adjustuserheadings="true!article"
 specifies that the levels of your headings are to be automatically adjusted
 (except inside article elements, which are considered to be
 independent, self-contained content) to make them consistent with the level
 of the title of the book division.
Example, input HTML page
 contains:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
	<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="UTF-8" />
 <title>Troubleshooting</title>
 </head>
 <body>
 <h1>Symptoms</h1>
 ...
 <h2>Intermittent symptoms</h2>
 ...
 <h1>Most common causes</h1>
 ...
 </body>
</htm>

The above input HTML is referenced as a subsection of a
 chapter in the book. Therefore the title of the subsection is represented by
 an h3 element. The output HTML page containing the subsection
 then looks like:
	1
2
3
4
5
6
7
8
	<section class="role-section2">
 <h3 class="role-section2-title">Troubleshooting</h3>
 <h4>Symptoms</h4>
 ...
 <h5>Intermittent symptoms</h5>
 ...
 <h4>Most common causes</h4>
 ...

If you want to prevent this from happening, please add attribute
 adjustuserheadings="false" to your root book
 element or add a class attribute to some or all of your
 headings. A heading having a class attribute is understood by
 XMLmind Ebook Compiler as being “not an ordinary heading which could be
 modified”.
6.3. Examples
An example is a figure element which has a
 class attribute containing "role-example". This kind of
 figure is listed in the "List of Examples" (that is,
 book element
 lox) only if it also has a figcaption child element. Example:
	1
2
3
4
5
6
7
8
9
10
11
	<figure class="role-example">
 <figcaption>"Hello World" program in the C language</figcaption>
 <pre>/* Hello World */
#include <stdio.h&ght;

int main()
{
 printf("Hello World\n");
 return 0;
}</pre>
</figure>

is rendered as:
Example 6-1. "Hello World" program in the C
 language/* Hello World */
#include <stdio.h>

int main()
{
 printf("Hello World\n");
 return 0;
}
Program listings
A program
 listing can have its lines automatically numbered and/or can feature syntax
 highlighting. This is done by adding
 "role-listing-NUMBER-LANGUAGE-tabWIDTH" to the
 class attribute of a pre element. Options NUMBER,
 LANGUAGE, tabWIDTH, may be specified in any
 order. Moreover some or all of these options may be omitted.

 	NUMBER, a strictly positive integer, specifies
 the number of the first line of the program listing. This option may be
 omitted if you don't want automatic line numbering.

 	LANGUAGE, one of (case-insensitive):
 "bourne" (or "shell" or "sh"),
 "c", "cmake" (or "make" or
 "makefile"), "cpp", "csharp",
 "css21" (or "css"), "delphi",
 "ini", "java", "javascript",
 "lua", "m2" (Modula 2),
 "perl", "php", "python",
 "ruby", "sql1999", "sql2003",
 "sql92" (or "sql"), "tcl",
 "upc" (Unified Parallel C),
 "html", "xml", specifies the programming
 language or markup language used in the program listing. This option may
 be omitted if you don't want syntax highlighting.

 	tabWIDTH where WIDTH is a positive
 integer, specifies whether tab characters should be expanded to a number
 of space characters. WIDTH is the maximum number of space
 characters for an expanded tab character, hence this value specifies the
 location of “tab stops”. Example:
 <pre class="role-listing-1-java-tab4"> means expand
 tabs to up to 4 space characters in this line-numbered Java listing.
 Other example: <pre class="role-listing-tab0-shell">
 means: do not replace tabs in this Bourne shell listing. When
 tabWIDTH is omitted, it is equivalent to having an
 implicit tab8.

Example 1 (in the following C program, lines are indented using
 tab characters):
	1
2
3
4
5
6
7
8
	<pre class="role-listing-1-c-tab4">/* Hello World */
#include <stdio.h&ght;

int main()
{
 printf("Hello World\n");
 return 0;
}</pre>

is rendered as:
	1
2
3
4
5
6
7
8
	/* Hello World */
#include <stdio.h>

int main()
{
 printf("Hello World\n");
 return 0;
}

Superfluous indentation is removed
 too
Note that in addition to replacing tab characters by a number of
 space characters, the tabWIDTH facility also removes the
 space characters which are common to the beginning of all text lines. That
 is, it removes the superfluous “indentation” in the program listing, if
 any.
Moreover, the tabWIDTH facility also removes
 the (useless) space characters found just before a newline
 character.
See example 2 below in which the indentation is
 automatically removed.

Example 2 (implicit
 role-listing-1-tab8; first line " /tmp/"
 starts with 4 space characters):
	1
2
3
4
5
6
7
8
9
10
11
	<pre class="role-listing-1"> /tmp/
 /usr/
 bin/
 lib/
 local/
 bin/
 lib/
 src/
 src/
 /var/
</pre>

is rendered as:
	1
2
3
4
5
6
7
8
9
10
11
	/tmp/
/usr/
 bin/
 lib/
 local/
 bin/
 lib/
 src/
 src/
/var/

6.4. Equations
An example is a figure element which has a
 class attribute containing "role-equation". This kind of
 figure is listed in the "List of Equations" (that is,
 book element
 loe) only if it also has a figcaption child element. Example:
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
	<figure class="role-equation">
 <figcaption>Special relativity</figcaption>
 <div>
 <math display="block"
 xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <mrow>
 <mi>t</mi>
 <mo>’</mo>
 </mrow>
 <mo>=</mo>
 <mrow>
 <mi>t</mi>
 <mo>⁢</mo>
 <mfrac>
 <mn>1</mn>
 <msqrt>
 <mrow>
 <mn>1</mn>
 <mo>-</mo>
 <mfrac>
 <msup>
 <mi>v</mi>
 <mn>2</mn>
 </msup>
 <msup>
 <mi>c</mi>
 <mn>2</mn>
 </msup>
 </mfrac>
 </mrow>
 </msqrt>
 </mfrac>
 </mrow>
 </mrow>
 </math>
 <div>
</figure>

is rendered as:
Equation 6-1. Special relativity

 t

 ’

 =

 t

 ⁢

 1

 1

 -

 v

 2

 c

 2

Few
 web browsers natively support MathML, so it's
 recommended to add a link to the MathJax script to
 your input HTML pages containing equations[1]. This typically done as
 follows (this loads latest 3.x version of the MathJax mml-chtml
 component):
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="UTF-8" />
 <title>...</title>

 <script async="async" id="MathJax-script"
 src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/mml-chtml.js"
 type="text/javascript"></script>

 </head>
 ...

[1] Even
 simpler, add the link to MathJax script to the headcommon
 element of your book.

6.5. Admonitions
An admonition, that is, a warning, a tip, a notice, etc, is a blockquote element which has a
 class attribute containing
 "role-ADMONITION", where
 role-ADMONITION is one of the following class
 names:

 Table 6-1. Admonition classes

 	Class name

 	Description

 	role-note

 	This is just a note.

 	role-attention

 	Please pay extra attention to this note.

 	role-caution

 	Care is required when proceeding.

 	role-danger

 	Important! Be aware of this before doing anything else.

 	role-fastpath

 	This note will speed you on your way.

 	role-important

 	This note is important.

 	role-notice

 	Indicates a potential situation which, if not avoided, might
 result in an undesirable result or state.

 	role-remember

 	Don't forget to do what this note says.

 	role-restriction

 	You can't do what this note says.

 	role-tip

 	This is a fine little tip.

 	role-trouble

 	Provides information about how to remedy a trouble
 situation.

 	role-warning

 	Indicates a potentially hazardous situation.

Example:
	1
2
3
4
5
6
7
	<blockquote class="role-important">
 <h4>How to check your oil</h4>
 <p>You need to check your car’s oil before any long trip
 to avoid major damage.</p>
 <p>The process for how to check your oil is simple and involves
 using the dip stick to see levels and test quality.</p>
</blockquote>

is rendered as:
How to check your oil
You need to check
 your car’s oil before any long trip to avoid major damage.
The process
 for how to check your oil is simple and involves using the dip stick to see
 levels and test quality.

6.6. Footnotes
Simple footnotes
This first and simplest form for a
 footnote is a span element which has a class
 attribute containing "role-footnote".
Example:
	1
2
3
	<p>YokoWritten with kanji <i>ko</i>, meaning
"child". The syllable <i>ko</i> is not generally found at the end of
masculine names. is a Japanese feminine given name.</p>

is
 rendered as:
Yoko[1] is a Japanese feminine given
 name.
General footnotes
When you need a footnote to contain
 paragraphs, lists or tables or when you need to reuse the same footnote at
 different locations in your document, you'll have to use the second, more
 general, form for a footnote.
This second form is a div element which has a class
 attribute containing "role-footnote" and an id attribute.

Moreover, you'll also have to insert an a element at the location where you want
 the footnote marker to be displayed. This a element, which
 points to the footnote div, must have a class
 attribute containing "role-footnote-ref".
Example:
	1
2
3
4
5
6
	<p>Yokois a Japanese
feminine given name.</p>

<div class="role-footnote" id="ko">Written with kanji <i>ko</i>,
meaning "child". The syllable <i>ko</i> is not generally found
at the end of masculine names.</div>

is rendered
 as:
Yoko[2] is a Japanese
 feminine given name.

[1] Written with kanji
 ko, meaning "child". The syllable ko is not generally found at
 the end of masculine names.
[2] Written with
 kanji ko, meaning "child". The syllable ko is not generally
 found at the end of masculine names.

6.7. Cross-references
No need to specify the text of a link when this link points to a
 book division (chapter, section, etc) or to a table, figure, example, or equation
 having a caption.
Example, the
 following empty links point respectively to section
 "Admonitions" and to table "Admonition classes"
 found in this section:
<p> contains
.</p>
are
 rendered as:
Section 6.5. Admonitions
 contains Table 6-1. Admonition classes.
The text which is automatically
 generated for these empty links may be configured using attribute
 xreflabels of element book.
Links
 specified using attribute data-xml-id-ref
It's also
 possible to create links using the a element and proprietary attribute
 data-xml-id-ref rather than (or in addition to) standard
 attribute href.
Attribute data-xml-id-ref
 must contain the value of the xml:id
 attribute of a book division found in the ebook specification. This
 allows the creation of links to locations that do not exist in the input
 HTML pages, but which will be created in the output HTML
 pages.
Example, <a data-xml-id-ref="ch04"/> points
 to the following chapter:
	1
2
3
4
5
	<chapter xml:id="ch04">
 <head><title>...</title></head>
 <section href="ch4/s1.html"/>
 <section href="ch4/s2.html"/>
</chapter>

In input HTML page "ch4/s2.html", you
 may refer to the first section of the chapter by writing
 . But how to refer to the chapter
 itself? Notice that this chapter has no input HTML page to refer
 to.
The solution to this problem is to add proprietary attribute
 data-xml-id-ref to an a element. For the above
 example, it's <a data-xml-id-ref="ch04"/>.
Note
 that writing
 is an even better option because href="s1.html" is used as a
 fallback link target in case xml:id="ch04" is not defined in
 the ebook specification.
6.8. Index terms
Creating index terms by hand (other
 than copying an index term to paste it elsewhere) is tedious and error
 prone. It's strongly recommended to use the specialized dialog box of XMLmind XML
 Editor to do that.

Figure 6-1. The "Edit index term" dialog box of XMLmind
 XML Editor[image: The "Edit index term" dialog box of XMLmind XML Editor]

An index term is represented by
 a a element having attribute
 class="role-index-term" containing
 text —the primary word or phrase in an index term— and possibly nested span elements having the following roles:
 "role-term", "role-see", "role-see-also".
index_term -> end_of_range | term

end_of_range ->

term -> term_content

term_attributes -> [data-sort-as="text"]?
 [data-start-range="range_name"]?

term_content -> rich_text term_childs

term_childs -> [sub_term]? | [see]* | [see_also]*

sub_term -> term_content

see -> see_content

see_also -> see_content

see_content -> rich_text see_child

see_child -> [rich_text see_child]?
In
 the above grammar:

 	"Rich text" means the mix of text and phrase elements
 (b, i, em, etc) allowed in
 a and span elements.

 	Though the grammar allows
 to be nested to an arbitrary
 depth, a may contain only
 up two nested ,
 corresponding respectively to the secondary word and tertiary word of an
 index term. The same limit applies to
 and to
 .

Examples:

 	Simplest index term containing just a phrase:Dog, man's best friend

 	“Sort-as” example:	1
2
	<a class="role-index-term"
 data-sort-as="percent">%

 	Index terms having primary, secondary and tertiary terms:	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
	Pet
 Cat

...
Pet
 Cat
 Siamese

...
Pet
 Cat
 Burmese

 	Start of the "dogs" range:	1
2
3
	Pet
 Dog

 	End of the above "dogs" range. The end of a range must
 be found after the corresponding start of range in the same
 input HTML page or in a different input HTML page:
Notice
 that an end of range index term does not contain text nor any child
 element. It just has a "data-end-range" attribute.

 	“See” example:	1
2
3
4
5
	<i lang="la">Felis catus</i>
 Pet
 Cat

 	“See also” example:	1
2
3
4
5
6
	<i lang="la">Canis lupus</i>
 Dog, man's best friend
 Pet
 Dog

Chapter 7. Reference of ebook elements
Table of Contents
	7.1. Element appendices
	7.2. Element appendix
	7.3. Element backmatter
	7.4. Element body
	7.5. Element book
	7.6. Element chapter
	7.7. Element content
	7.8. Element frontmatter
	7.9. Element head
	7.10. Element headcommon
	7.11. Element index
	7.12. Element loe
	7.13. Element lof
	7.14. Element lot
	7.15. Element lox
	7.16. Element part
	7.17. Element related
	7.18. Element section
	7.19. Element title
	7.20. Element toc
	7.21. Common attributes

7.1. Element appendices
Specifies the group of appendices of the
 ebook.
Content model
(head? , body? , related* , appendix+)
Attributes

 	Name

 	Data type

 	Default value

 	href

 	anyURI
min. length: 1

 	

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain appendices: book.
Children
The following elements
 occur in appendices: appendix, body, head, related.
Example
	1
2
3
4
5
6
	<appendices pagename="Appendixes">
 <appendix href="pages/known_problems.html"/>
 <appendix href="pages/error_list.html">
 <section href="pages/report_error.html"/>
 </chapter>
</part>

7.2. Element appendix
Specifies an appendix of the ebook.
Content model
(head? , body? , related* , section*)
Attributes

 	Name

 	Data type

 	Default value

 	href

 	anyURI
min. length: 1

 	

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain appendix: appendices, book.
Children
The following elements
 occur in appendix: body, head, related, section.
Example
	1
2
3
4
5
6
	<appendices pagename="Appendixes">
 <appendix href="pages/known_problems.html"/>
 <appendix href="pages/error_list.html">
 <section href="pages/report_error.html"/>
 </chapter>
</part>

7.3. Element backmatter
Specifies the back matter of the ebook.
Content model
(toc | index | lot | lof | loe |
 lox | section)+
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain backmatter: book.
Children
The
 following elements occur in backmatter: index, loe, lof, lot, lox, section, toc.
Example
	1
2
3
4
	<backmatter>
 <section href="glossary.html"/>
 <index/>
</backmatter>

7.4. Element body
Specifies the content of a book division (part, chapter, section, etc).
When the
 parent of body is element book then
 body specifies the content of the “title page” of the
 book.
It's possible for a book division to have both an
 href attribute and a body child element. In such
 case, the content “pulled” using the href attribute is inserted
 before the content specified by the body child
 element.
Content model
content+
Attributes

 	Name

 	Data type

 	Default value

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain body: appendices, appendix, book, chapter, part, section.
Children
The
 following elements occur in body: content.
Example
	1
2
3
4
5
6
7
8
9
	<chapter>
 <head>
 <title>Using Widget</title>
 </head>
 <body>
 <content href="using1.html"/>
 <content href="using2.html"/>
 </body>
</chapter>

7.5. Element book
Specifies a complete ebook.
Content model
(headcommon? ,
 head? ,
 body? ,
 related* ,
 frontmatter? ,
 ((part+ , appendices?) |
 (chapter+ , appendix*)) ,
 backmatter?)
Attributes

 	Name

 	Data type

 	Default value

 	adjustuserheadings

 	'false'|'true' [S
 '!' (S exclusion)+
]
exclusion -> HTML_element_name [
 '.' class]
class ->
 class_value | class_prefix '*'

 	"true!article"

 	appendicestocdepth

 	nonNegativeInteger

 	"0"

 	appendixnumber

 	normalizedString

 	"%A"

 	appendixtocdepth

 	nonNegativeInteger

 	"0"

 	booklistlabels

 	none | all |
(part |
 chapter | appendix | section
 | figure | table | example |
 equation)+

 	"none"

 	chapternumber

 	normalizedString

 	"%1"

 	chaptertocdepth

 	nonNegativeInteger

 	"0"

 	equationnumber

 	normalizedString

 	"%n-%1"

 	examplenumber

 	normalizedString

 	"%n-%1"

 	figurenumber

 	normalizedString

 	"%n-%1"

 	footnotenumber

 	normalizedString

 	"[%1]"

 	headoverridedefault

 	boolean

 	"false"

 	href

 	anyURI
min. length: 1

 	

 	includebasestylesheet

 	boolean

 	"false"

 	labelseparator

 	normalizedString

 	". "

 	pagename

 	token
min. length: 1

 	

 	partnumber

 	normalizedString

 	"%I"

 	parttocdepth

 	nonNegativeInteger

 	"0"

 	preventlonelyheading

 	boolean

 	"true"

 	section1number

 	normalizedString

 	"%n.%1"

 	section2number

 	normalizedString

 	"%n.%1"

 	section3number

 	normalizedString

 	"%n.%1"

 	section4number

 	normalizedString

 	"%n.%1"

 	section5number

 	normalizedString

 	"%n.%1"

 	section6number

 	normalizedString

 	"%n.%1"

 	section7number

 	normalizedString

 	"%n.%1"

 	section8number

 	normalizedString

 	"%n.%1"

 	section9number

 	normalizedString

 	"%n.%1"

 	tablenumber

 	normalizedString

 	"%n-%1."

 	titlelabels

 	none | all |
(part |
 chapter | appendix | section
 | figure | table | example |
 equation)+

 	"part chapter appendix figure table example
 equation"

 	tocdepth

 	positiveInteger

 	"10"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

 	xreflabels

 	none | all |
(part |
 part-number | chapter |
 chapter-number | appendix |
 appendix-number | section |
 section-number | figure |
 figure-number | table |
 table-number | example |
 example-number | equation |
 equation-number)+

 	"all"

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".

 	adjustuserheadings

 	If set to true, change the level of user-specified
 headings (h1, h2, h3, etc) to be
 consistent with the level of automatically generated headings. If set to
 false, do not change any user-specified headings.
 Example:	1
2
3
4
	<chapter href="ch01.html" pagename="first_chapter">
 <section href="s01.html" pagename="first_section">
 <section href="s01_01.html" pagename="nested_section">
 ...

where input HTML file "s01_01.html" starts with a
 user-specified h1.
With
 adjustuserheadings="false", output HTML file
 "nested_section.html" contains:
	1
2
3
4
5
	<section class="role-section2>
 <h3 class="role-section2-title">Title of the section copied
 from "s01_01.html"<h3>
 <h1>User-specified heading found in "s01_01.html"</h1>
 ...

With adjustuserheadings="true", output HTML file
 "nested_section.html" contains:
	1
2
3
4
5
	<section class="role-section2>
 <h3 class="role-section2-title">Title of the section copied
 from "s01_01.html"<h3>
 <h4>User-specified heading found in "s01_01.html"</h4>
 ...

Note that
 adjustuserheadings="true" has no effect on headings having
 a class attribute. A heading having a user-specified
 class attribute is understood by XMLmind Ebook Compiler as
 being “not an ordinary heading which could be
 modified”.

Exceptions
Value
 "true" of attribute adjustuserheadings may be
 followed by "!" and a list of exceptions. An exception is
 either the local name of an HTML element (e.g. article,
 aside) or the local name of an HTML element followed by a
 dot and a value[1] of the
 class attribute (e.g. blockquote.role-warning,
 blockquote.role-*). When this is the case, the level of
 user-specified headings is not changed inside specified
 elements.
Note that the default value of attribute
 adjustuserheadings is "true!article" and not
 simply "true" because article elements are
 considered to be independent, self-contained content.

 	appendicestocdepth

 	If set to an integer larger than 0, instructs ebookc to
 automatically generate a Table of Contents (TOC) having
 specified depth at the beginning of the appendices division of the
 book.

 	appendixnumber

 	Specifies the format of the number automatically added to the title
 of an appendix. See Number format.

 	appendixtocdepth

 	If set to an integer larger than 0, instructs ebookc to
 automatically generate a Table of Contents (TOC) having
 specified depth at the beginning of each appendix of the book.

 	booklistlabels

 	Specifies the kind of numbered book divisions (part,
 chapter, appendix, section) and
 numbered figure objects (figure, table, equation, example) for which to
 add labels. This option applies to book list entries
 (toc, lof, lot, loe, lox).What is a
 label?
A label is a localized message
 containing the type of the book division or figure object. For example,
 with chapternumber="%1", labelseparator=") ",
 booklistlabels="none", a TOC entry for a
 chapter looks like: "1) Introduction". With
 booklistlabels="chapter" (or
 booklistlabels="all"), this TOC entry looks
 like: "Chapter 1) Introduction".
Note that labels are added
 only to numbered book divisions or figure objects. For example,
 with chapternumber="%1", booklistlabels="", a
 TOC entry for a chapter will look like:
 "Introduction".

 	chapternumber

 	Specifies the format of the number automatically added to the title
 of a chapter. See Number format.

 	chaptertocdepth

 	If set to an integer larger than 0, instructs ebookc to
 automatically generate a Table of Contents (TOC) having
 specified depth at the beginning of each chapter of the book.

 	equationnumber

 	Specifies the format of the number automatically added to the
 caption of an equation. See Number
 format.

 	examplenumber

 	Specifies the format of the number automatically added to the
 caption of an example. See Number
 format.

 	figurenumber

 	Specifies the format of the number automatically added to the
 caption of an figure. See Number
 format.

 	footnotenumber

 	Specifies the format of the number automatically added to footnotes
 (or
 <div class="role-footnote">) and footnote callouts
 ().

 	includebasestylesheet

 	If set to "true", include
 ebookc_install_dir/xsl/common/resources/base.css in
 all the output HTML pages.

 	Using the base.css stock CSS stylesheet is the
 simplest, easiest, mean to create a nicely formatted book. More
 information about this attribute in Leveraging
 base.css, the stock CSS stylesheet.When includebasestylesheet="true",
 base.css is included before the other CSS
 stylesheets referenced in the headcommon (if
 any).
If you want to control where base.css is
 included, do not set includebasestylesheet to
 "true", instead add a headcommon similar to the
 one in the following example:
<headcommon>
 <html:link href="corporate_styles.css" rel="stylesheet"
 type="text/css"/>
 <html:link href="ebookc-home:xsl/common/resources/base.css"
 rel="stylesheet resource" type="text/css"/>
</headcommon>
The "ebookc-home:" prefix works
 because stock XML catalog ebookc_install_dir/schema/catalog.xml
 contains:
<rewriteURI uriStartString="ebookc-home:" rewritePrefix="../"/>.

 	headoverridedefault

 	Specifies the default value of attribute override of
 element head.

 	labelseparator

 	Specifies the string which is appended to the label
 automatically generated at the beginning of the title of a book division
 (part, chapter, appendix,
 section) or figure object (figure, table, equation,
 example). Example: with labelseparator=") ", the output
 HTML element generated for the following chapter is:<chapter href="ch01.html">
is:
	1
2
3
4
5
	<section class="role-chapter>
 <h1 class="role-chapter-title">
 Chapter
 1)
 Title of the chapter copied from "ch01.html"<h1>

 	partnumber

 	Specifies the format of the number automatically added to the title
 of a part of the book. See Number
 format.

 	parttocdepth

 	If set to an integer larger than 0, instructs ebookc to
 automatically generate a Table of Contents (TOC) having
 specified depth at the beginning of each part of the book.

 	preventlonelyheading

 	If set to true, prevent an output HTML page from
 containing only a title. Example:	1
2
3
4
5
6
	<chapter pagename="chapter1">
 <head>
 <title>First chapter</title>
 </head>
 <section href="s01.html"/>
 ...

With preventlonelyheading="false", output HTML page
 "output_directory/chapter1.html" contains just the
 title of the chapter "First chapter", which may be surprising for
 the reader of the book.
With
 preventlonelyheading="true", output HTML page
 "output_directory/chapter1.html" contains the title
 of the chapter "First chapter" and also the content of input HTML
 page "s01.html"[2].

 	section1number

 	Specifies the format of the number automatically added to the title
 of a top level section. See Number
 format.

 	section2number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 2 (subsection of a top
 level section). See Number format.

 	section3number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 3. See Number format.

 	section4number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 4. See Number format.

 	section5number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 5. See Number format.

 	section6number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 6. See Number format.

 	section7number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 7. See Number format.

 	section8number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 8. See Number format.

 	section9number

 	Specifies the format of the number automatically added to the title
 of a section having a nesting level equal to 9. See Number format.

 	tablenumber

 	Specifies the format of the number automatically added to the
 caption of an table. See Number
 format.

 	titlelabels

 	Specifies the kind of numbered book divisions (part,
 chapter, appendix, section) and
 numbered figure objects (figure, table, equation, example) for which to
 add labels. This option
 applies to titles or captions.For example, with
 chapternumber="%1", labelseparator=") ",
 titlelabels="none", the title of a chapter looks like:
 "1) Introduction". With titlelabels="chapter" (or
 titlelabels="all"), this title looks like: "Chapter
 1) Introduction".

 	tocdepth

 	Specifies the depth of the main Table of Contents (TOC)
 (see toc element).

 	xml:lang

 	Specifies the main language of the book. This language is used to
 automatically generate some titles (e.g. "Table of Contents",
 "List of Figures") and also to sort index entries.

 	Unlike lang, which is a
 XHTML5 global attribute, xml:lang is not copied to
 the output HTML element corresponding to the book
 element.
However, explicitly setting attribute
 xml:lang on the book element is a convenient
 way to ensure that all the output HTML pages have a lang
 attribute.

 	xreflabels

 	Specifies the kind of numbered book divisions (part,
 chapter, appendix, section) and
 numbered figure objects (figure, table, equation, example) for which to
 add labels. This option
 applies to automatically generated link text.For example, with
 chapternumber="%1", labelseparator=") ",
 xreflabels="none", the text automatically generated for
 empty link to chapter looks
 like: "1) Introduction". With xreflabels="chapter"
 (or xreflabels="all"), this text looks like: "Chapter
 1) Introduction".
With
 xreflabels="chapter-number", this text looks like:
 "Chapter 1", that is, no chapter title, just the label without
 any label separator. Note that this "-number" suffix is
 supported only by xreflabels.

Number format

 	%1

 	Decimal numbers, beginning with 1.

 	%a

 	Lowercase ASCII letters (a, b, c, ... z).

 	%A

 	Uppercase ASCII letters (A, B, C, ... Z).

 	%i

 	Lowercase roman numerals (i, ii, iii, iv, v, etc).

 	%I

 	Uppercase roman numerals (I, II, III, IV, V, etc).

 	%n

 	Number of parent element. Example: prepend the number of the
 chapter parent to the number of a top level
 section element: "%n.%1".In the case of a
 figure, table, equation or example, %n is the number of the
 ancestor chapter or appendix element.

An empty string may be used to specify that the book division or
 figure object is not numbered.

 	There is no automatic numbering inside frontmatter and
 backmatter elements.There is no automatic numbering
 directly inside part and appendices
 elements.
That's why section numbers like "%n.%1" and
 figure numbers like "%n-%1" work in all cases.

 	Sections having a nesting level greater than 9 cannot be
 numbered.

 	An ebook specification can only have a single
 appendices division. That's why an appendices
 division cannot be numbered (i.e. no appendicesnumber
 attribute).

Children
The following elements occur
 in book: appendices, appendix, backmatter, body, chapter, frontmatter, head, headcommon, part, related.
Example
	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
	<book appendixtocdepth="100" chaptertocdepth="100"
 section7number="" section8number="" section9number=""
 labelseparator=" "
 booklistlabels="chapter appendix"
 xreflabels="chapter appendix section
 figure-number table-number equation-number example-number"
 xml:lang="en-US"
 xmlns="http://www.xmlmind.com/schema/ebook"
 xmlns:html="http://www.w3.org/1999/xhtml">
 <head>
 <title>Widget User Guide</title>
 <html:meta content="John Smith" name="author"/>
 <html:meta content="2017-08-25" name="dc.date"/>
 </head>
 ...
</book>

[1] The prefix of a value of the
 class attribute may be specified by ending the prefix with
 a '*'. Example: "role-*" matches any class
 value starting with "role-".
[2] As if attribute
 samepage="true" were automatically added to the
 section element.

7.6. Element chapter
Specifies a chapter of the ebook.
Content model
(head? , body? , related* , section*)
Attributes

 	Name

 	Data type

 	Default value

 	href

 	anyURI
min. length: 1

 	

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain chapter: book, part.
Children
The following elements
 occur in chapter: body, head, related, section.
Example
	1
2
3
4
5
6
	<part>
 <chapter href="pages/install.html">
 <section href="pages/requirements.html" samepage="true"/>
 </chapter>
 <chapter href="pages/quick_start.html"/>
</part>

7.7. Element content
Instructs
 XMLmind Ebook Compiler to copy to the output HTML page all the elements
 found in the html:body of the input HTML page pointed to
 by the href attribute.
Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	href

 	anyURI
min. length: 1

 	REQUIRED

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain content: body.
Example
	1
2
3
4
5
6
7
8
9
	<chapter>
 <head>
 <title>Using Widget</title>
 </head>
 <body>
 <content href="using1.html"/>
 <content href="using2.html"/>
 </body>
</chapter>

7.8. Element frontmatter
Specifies the front matter of the ebook.
Content model
(toc | index | lot | lof | loe |
 lox | section)+
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain frontmatter: book.
Children
The
 following elements occur in frontmatter: index, loe, lof, lot, lox, section, toc.
Example
	1
2
3
4
5
6
7
8
	<frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html"/>
</frontmatter>

7.9. Element head
Specifies the content of the html:head element of an output HTML
 page.
By default, this html:head element is simply a copy
 of the html:head element found in the content “pulled” using
 the href attribute of a book division. But when a
 head child element of a book division is specified,

 	Its title child element is used to specify the html:title of the output HTML
 page.

 	All its other child elements and also all its XHTML5 global attributes are copied to the
 html:head of the output HTML page.

Content model
(title? ,
 (html:base | html:link | html:meta | html:script | html:style |
 html:template)*)
Attributes

 	Name

 	Data type

 	Default value

 	override

 	boolean

 	Specified by attribute
 headoverridedefault of element
 book.

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".

 	override

 	When set to true, the child elements and XHTML5 global
 attributes found in the head element completely
 replace the child elements and XHTML5 global attributes found in
 the html:head element of an input HTML page.When set to
 false, the child elements and XHTML5 global attributes
 found in the head element are merged with the child
 elements and XHTML5 global attributes found in the
 html:head element of an input HTML page.

Parents
The following elements contain head:
 appendices, appendix, book, chapter, part, section.
Children
The
 following elements occur in head: html:base, html:link, html:meta, html:script, html:style, html:template, title.
Example
Element
 head is most often used to give a “rich” title to a book
 division.
	1
2
3
4
5
6
7
8
9
10
11
12
13
	<appendix href="ssh_key.html">
 <head>
 <title>Generating Your <html:b>SSH</html:b> Public Key</title>

 <html:style>
.error {
 font-weight: bold;
 font-style: italic;
 color: #800000;
}
 </html:style>
 </head>
</appendix>

See also
	Section 7.10. Element headcommon

7.10. Element headcommon
Specifies some common content for the html:head elements of all the output HTML
 pages.
Note that the XHTML5 global attributes found on element
 headcommon are also copied to the html:head
 elements of all the output HTML pages.
Content model
(html:base | html:link | html:meta | html:script | html:style |
 html:template)*
Attributes

 	Name

 	Data type

 	Default value

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain headcommon: book.
Children
The
 following elements occur in headcommon: html:base, html:link, html:meta, html:script, html:style, html:template.
Example
Element
 headcommon is typically used to give a common CSS stylesheet to
 all the output HTML pages.
	1
2
3
4
5
6
7
	<book>
 <headcommon>
 <html:link href="../resources/styles.css" rel="stylesheet"
 type="text/css"/>
 </headcommon>
 ...
</book>

See also
	Section 7.9. Element head

7.11. Element index
Instructs XMLmind Ebook Compiler to automatically generate an
 index.

 	The language used to automatically sort generated index entries is
 taken from the xml:lang attribute of the
 book element.

 	An index term is a a element without an href attribute having class attribute containing
 "role-index-term". See Section 6.8. Index terms.

Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain toc: backmatter, frontmatter.
Example
	1
2
3
4
	<backmatter>
 <section href="glossary.html"/>
 <index/>
</backmatter>

7.12. Element loe
Instructs XMLmind Ebook Compiler to automatically generate a List
 of Equations (LOE).
An equation listed in
 the LOE is a html:figure element having a html:figcaption and a class attribute containing
 "role-equation". See Section 6.4. Equations.

Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain loe: backmatter, frontmatter.
Example
	1
2
3
4
5
6
7
8
	<frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html"/>
</frontmatter>

See also
	Section 7.14. Element lot
	Section 7.13. Element lof
	Section 7.15. Element lox

7.13. Element lof
Instructs XMLmind Ebook Compiler to automatically generate a List
 of Figures (LOF).
A plain figure listed
 in the LOF is a html:figure having a html:figcaption and no class attribute or a class
 attribute not containing "role-equation" or
 "role-example".

Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain lof: backmatter, frontmatter.
Example
	1
2
3
4
5
6
7
8
	<frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html"/>
</frontmatter>

See also
	Section 7.14. Element lot
	Section 7.12. Element loe
	Section 7.15. Element lox

7.14. Element lot
Instructs XMLmind Ebook Compiler to automatically generate a List
 of Tables (LOT).
A table listed in the
 LOT is a html:table having a html:caption.

Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain lot: backmatter, frontmatter.
Example
	1
2
3
4
5
6
7
8
	<frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html"/>
</frontmatter>

See also
	Section 7.13. Element lof
	Section 7.12. Element loe
	Section 7.15. Element lox

7.15. Element lox
Instructs XMLmind Ebook Compiler to automatically generate a List
 of Examples (LOX).
An example listed in
 the LOX is a html:figure element having a html:figcaption and a class attribute containing
 "role-example". See Section 6.3. Examples.

Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain lox: backmatter, frontmatter.
Example
	1
2
3
4
5
6
7
8
	<frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html"/>
</frontmatter>

See also
	Section 7.14. Element lot
	Section 7.13. Element lof
	Section 7.12. Element loe

7.16. Element part
Specifies a part
 —a group of chapters— of the ebook.
Content model
(head? , body? , related* , chapter+)
Attributes

 	Name

 	Data type

 	Default value

 	href

 	anyURI
min. length: 1

 	

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain part: book.
Children
The following elements
 occur in part: body, chapter, head, related.
Example
	1
2
3
4
5
6
	<part>
 <chapter href="pages/install.html">
 <section href="pages/requirements.html" samepage="true"/>
 </chapter>
 <chapter href="pages/quick_start.html"/>
</part>

7.17. Element related
Instructs XMLmind Ebook Compiler to generate a list of links.
The targets of
 these links are the book divisions (part, chapter, section, etc) having an
 xml:id attribute referenced in the ids attribute
 of the related element.
The default title of this list of
 links is "Related information". A different title (e.g. "See
 also") may be specified in attribute
 relation.
Content
 model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	ids

 	IDREFS

 	REQUIRED

 	relation

 	token
min. length: 1

 	

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

 	ids

 	Specifies the IDs of the related book divisions (part, chapter,
 section, etc). Redundant IDs found in this list are ignored.

 	relation

 	Specifies the title of the automatically generated list of links. By
 default, it's "Related information" translated to the language of
 the parent element of the automatically generated list of links.

Parents
The following elements contain
 related: appendices, appendix, book, chapter, part, section.
Example
	1
2
3
4
5
6
7
	<chapter href="ch01.html" xml:id="ch01">
 <related ids="ch01 ch02 ch03"/>
</chapter>
<chapter href="ch02.html" xml:id="ch02">
 <related ids="ch01 ch02 ch03"/>
</chapter>
...

7.18. Element section
Specifies a section of the ebook.
Content model
(head? , body? , related* , section*)
Attributes

 	Name

 	Data type

 	Default value

 	href

 	anyURI
min. length: 1

 	

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain section: appendix, backmatter, chapter, frontmatter, section.
Children
The
 following elements occur in section: body, head, related, section.
Example
	1
2
3
4
5
6
	<part>
 <chapter href="pages/install.html">
 <section href="pages/requirements.html" samepage="true"/>
 </chapter>
 <chapter href="pages/quick_start.html"/>
</part>

7.19. Element title
Specifies the “rich” title of a book division (part, chapter, section, etc).
Content
 model
Element title can contain text and the same XHTML5
 child elements as an html:p element (that is,phrasing
 content: html:b, html:img, etc) in any order and in any
 number.
Attributes

 	Name

 	Data type

 	Default value

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: XHTML5 global attributes, including any attribute having
 a name starting with "data-".
Parents
The
 following elements contain title: head.
Children
The
 following elements occur in title: the same XHTML5 child
 elements as an html:p element.
Example
	1
2
3
4
5
	<appendix href="ssh_key.html">
 <head>
 <title>Generating Your <html:b>SSH</html:b> Public Key</title>
 </head>
</appendix>

7.20. Element toc
Instructs XMLmind Ebook Compiler to automatically generate a Table
 of Contents (TOC).
Content model
EMPTY
Attributes

 	Name

 	Data type

 	Default value

 	pagename

 	token
min. length: 1

 	

 	samepage

 	boolean

 	"false"

 	xml:base

 	anyURI

 	

 	xml:id

 	ID

 	

 	xml:lang

 	language or "" (the empty string)

 	.

Other attributes: any attribute having a name starting
 with "data-".
Parents
The following elements
 contain toc: backmatter, frontmatter.
Example
	1
2
3
4
5
6
7
8
	<frontmatter>
 <toc/>
 <lof/>
 <lot/>
 <lox/>
 <loe/>
 <section href="intro.html"/>
</frontmatter>

7.21. Common attributes

 	href

 	Specifies the location of an input HTML file. This file must contain
 valid XHTML5
 (more information in Section 6.1. [image: HTML5 logo]
 Valid XHTML5). The specified
 URL may not have a fragment identifier (e.g. something like
 href="ch09.html#conclusion" is not supported).

 	pagename

 	Specifies the base name without any extension of an output HTML
 file. By default, this name is the same as the name of the corresponding
 input HTML file. Example:<chapter href="intro.html" pagename="introduction"/>
By
 default, without attribute pagename, the page generated for
 the above chapter would be
 output_directory/intro.html.
After setting
 pagename to "introduction", the page generated
 for the above chapter is
 output_directory/introduction.html.

 	samepage

 	Specifies that the book division (e.g. a section) is to be generated
 in the same output HTML file as its parent book division (e.g. a
 chapter). By default, all book divisions are generated by
 ebookc in their own HTML files. Example:	1
2
3
4
	<chapter href="ch1.html">
 <section href="ch1/s1.html" samepage="true"/>
 <section href="ch1/s2.html"/>
</chapter>

Attribute samepage="true" instructs
 ebookc to generate the content of the chapter and the
 content of the first section in the same HTML file. The second section
 having an implied samepage="false" is created in its own
 HTML file.
Note that something like:
	1
2
3
4
	<chapter href="ch1.html">
 <section href="ch1/s1.html"/>
 <section href="ch1/s2.html" samepage="true"/>
</chapter>

is an error because there is no way for
 ebookc to generate two sibling sections in the same output
 HTML file.

 	xml:base

 	Specifies a base URL which used to resolve the relative URLs found
 in the ebook specification.

 	xml:lang

 	Ignored for any element other than book, for which it specifies the
 main language of the book.

 	xml:id

 	Specifies the unique ID of an element of the ebook specification.
 Specifying an xml:id attribute is useful in the following
 cases:
 	It is required for a book division to be referenced in a related element.
 Example:	1
2
3
	<chapter href="ch1.html" xml:id="ch01">
 <related ids="ch01 ch02 ch03" xml:id="rel1"/>
</chapter>

 	It allows the inclusion of ebook elements using XInclude. In the preceding example,
 related element "rel1" is defined in first
 chapter. In the following example, a copy of related
 element "rel1" is included in the second chapter:	1
2
3
4
	<chapter href="ch2.html" xml:id="ch02">
 <xi:include href="" xpointer="rel1" set-xml-id=""
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
</chapter>

 	It may be used to control the IDs generated in the output HTML
 pages. Example:	1
2
3
	<chapter href="ch3.html" xml:id="going_further">
 <section href="ch3/s1.html" xml:id="requirements" samepage="true"/>
</chapter>

 	The html element of the output page containing
 the chapter will have id="going_further". All the
 elements “pulled” from "ch3.html" will have their
 IDs prefixed with "going_further__".

 	The section element containing the section will
 have id="requirements". All the elements “pulled”
 from "ch3/s1.html" will have their IDs prefixed
 with "requirements__".

 	Referencing the value of an xml:id attribute in
 proprietary attribute data-xml-id-ref may be used to create links to locations that do not exist
 in the input HTML pages, but which will be created in the output
 HTML pages. Example:	1
2
3
4
5
	<chapter xml:id="ch04">
 <head><title>...</title></head>
 <section href="ch4/s1.html"/>
 <section href="ch4/s2.html"/>
</chapter>

In input HTML page "ch4/s2.html", you
 may refer to the first section of the chapter by writing
 . But how to refer to the
 chapter itself? Notice that this chapter has no input HTML page to
 refer to.
The solution to this problem is to add proprietary
 attribute data-xml-id-ref to an a element. For the above example,
 it's <a data-xml-id-ref="ch04"/>.
Note that
 writing
 is an
 even better option because href="s1.html" is used as a
 fallback link target in case xml:id="ch04" is not
 defined in the ebook specification.

 	Any XHTML5 global attribute, including any attribute
 having a name starting with "data-"

 	These attributes (e.g. class, dir,
 lang, onclick, style) are copied
 to the output HTML element corresponding to the book division. Example:
 the output HTML element corresponding to the following appendix:<appendix href="a2.html" samepage="true" class="disclaimer" lang="fr-FR"/>
is:
<html:section class="role-appendix disclaimer" lang="fr-FR"/>
Specifying an id attribute for a
 book division is likely to cause broken links in the output HTML
 files.

Chapter 8. How it works
Figure 8-1. XMLmind Ebook Compiler
 components[image: XMLmind Ebook Compiler components]

 	The Processor is the main component of XMLmind Ebook Compiler. It
 processes an ebook specification referencing a number of valid XHTML5
 pages. It generates processed valid XHTML5 pages and generally also, a
 subdirectory (called "_res/" by default) containing all the
 resources referenced by the processed pages.Whatever the file layout
 of the input HTML pages and their resources, all the files and
 directories are always created in a single output directory, which makes
 this output directory self-contained.
In addition to the processed
 pages, the Processor automatically creates an HTML page (called
 "_toc_frame.html" by default) containing a table of
 contents and the manifest of all the resources found in the resource
 directory (in the form of
 <link href="XXX" rel="resource" type="YYY"/>
 elements).
The Processor also automatically creates an HTML page
 (called "_frameset.html" by default) containing a frameset. The only purpose of this
 frameset is to be able to quickly navigate the output of
 the Processor when testing and debugging.

 	Generating a single HTML page out of an ebook
 specification does not involve any further processing steps. The
 Processor is simply instructed to generate a single page and files
 "_toc_frame.html" and "_frameset.html" are
 discarded.

 	Generating an EPUB file requires transforming
 "_toc_frame.html" by the means of the
 xsl/epub/epub.xsl stylesheet and then archiving[1] the contents of
 the output directory.

 	Generating a Web Help requires transforming
 "_toc_frame.html" by the means of the
 xsl/webhelp/webhelp.xsl stylesheet and then processing the
 contents of the output directory using XMLmind
 Web Help Compiler.

 	Generating PDF, DOCX, ODT, etc, requires first
 generating an intermediate format called XSL-FO. This is
 done by the means of the xsl/fo/fo.xsl stylesheet. After
 that, it's up to an XSL-FO processor — Apache
 FOP, RenderX
 XEP or Antenna House Formatter for the PostScript and
 PDF formats, XMLmind XSL-FO Converter for the RTF, WML, DOCX
 and ODT formats— to create the output file.

 	The CSS styles specified in the ebook specification
 and in the source HTML pages are also used when generating output
 formats based on XSL-FO. However for this to work, these CSS styles need
 to be translated to directly usable XSL-FO properties (see apply-css-styles) and stored in
 processing-instructions (<?css-styles?>) prior to be
 transformed by the xsl/fo/fo.xsl stylesheet. This
 preparatory step is implemented by the "CSS to XSL-FO properties"
 component depicted in the above figure.

[1] An EPUB is a zip archive.

Chapter 9. The ebookc command-line utility
Command-line usage
ebookc [option]* in_ebook_file out_file_or_directory
Converts
 specified ebook input file and saves the result of the conversion to
 specified output file or directory.
An ebook input file may be specified using its
 URL or its filename.
Output formats webhelp,
 html and frameset require
 output_file_or_directory to be a directory. Other output formats
 require output_file_or_directory to be a file.
The output
 directory is created if it does not already exist.
Example: convert
 userguide.ebook to Web
 Help:
C:\docsrc> ebookc -f webhelp userguide.ebook out\wh
Example:
 convert userguide.ebook to PDF using RenderX
 XEP:
C:\docsrc> ebookc -xep C:\xep\xep.bat userguide.ebook out\userguide.pdf
Commonly used command-line options
Some options
 have both a short name and a long name. Example: -p is
 equivalent to -param.

 	-p param_name
 param_value

 	-param param_name param_value

 	Specifies a conversion parameter, generally an XSLT stylesheet
 parameter."profile." parameters
A
 param_name starting with "profile." specifies a
 profiling attribute. Example:
 -p profile.data-output-format html or more simply
 -p profile.output-format html (the "data-"
 attribute name prefix being implied). See Section 4.3. Conditional processing.
"load.page_loader_name."
 parameters
A param_name starting with
 "load.page_loader_name." specifies an option which
 is passed to the alternate page loader called page_loader_name.
 For example, -p load.markdown.autolink true turns on the
 autolink extension in the Markdown loader. See Supported Markdown extensions.
"proc."
 parameters
A param_name starting with
 "proc." specifies a low-level option
 which is passed to the first pass of ebookc. This first
 pass, called the Processor, compiles the input ebook specification to multi-page
 XHTML5 with a frameset and a “TOC frame”[1], see Chapter 8. How it works. Example:
 -p proc.resourcedirname resources.
Setting these
 low-level options “by hand” is almost never needed, it's best not to
 fiddle with these.

 Table 9-1. Low-level processor options

 	Option

 	Value

 	Description

 	copiablelinks

 	List of values separated by whitespace. Allowed values
 are: 'part', 'chapter',
 'section', 'figure',
 'table', 'heading', 'all'
 (equivalent to 'chapter section figure
 table'; 'part' and 'heading'
 not included in this list).
Default
 value: '' (do not add copiable links).

 	Adds a copiable
 link to the heading or caption child elements of specified
 “formal elements”.

 	If the “formal element” is numbered (e.g. has a
 "Chapter 1." automatically generated label), then the
 automatically generated label is converted to a link. This
 link points to the formal element (e.g. a link to the
 section having a chapter role).

 	Otherwise (e.g. a table which is not
 numbered), a link containing the section symbol, "§",
 is added to the heading or caption. This link points to the
 formal element (e.g. a link to the table).

This automatically generated link to a formal element
 is intended to be copied using the "Copy Link" entry
 found in the contextual menu of all web browsers in order to be
 shared with others. For example, send this link by
 email.

 	For this facility to work, the formal element must have
 an id attribute, whether specified by the
 author or automatically generated by
 ebookc.

 	It does not make sense to use this parameter when
 generating EPUB or any XSL-FO based output format (PDF, RTF,
 etc). Use it only when generating HTML or Web Help.

 	debug

 	true |
 false
Default:
 false.

 	Print low-level debugging info.

 	externalresourcebase

 	Absolute or relative URI ending with
 '/'.
Default: '' (no
 base).

 	Specifies an absolute or relative URI to be prepended to
 external resources having a relative URI.

 	framesetfilename

 	File basename without any extension.
Default:
 "_frameset".

 	Specifies the name of the frameset file
 generated by first pass.

 	htmlcharset

 	A valid charset.
Default:
 "UTF-8".

 	Specifies which charset to use for the generated HTML
 files.

 	htmlextension

 	File extension (without a leading period).
Default:
 "html".

 	Specifies which file extension to use for the generated
 HTML files.

 	ignoreresources

 	true |
 false
Default:
 false.

 	If set to true, do not process resources.
 That is, treat all resources as if they were external
 resources.

 	indexfilename

 	File basename without any extension.
Default:
 none.

 	Specifies that the index is to be generated in a separate
 HTML file. This option specifies the name of this separate
 file.
Setting this option generally also requires setting
 suppressindex to true.
Ignored
 unless the ebook as specified by the user actually contains an
 <index/> descendant.

 	pagenavigation

 	none | header |
 footer | both
Default:
 none.

 	Specifies whether page navigation headers and/or footers
 are to be added to the output HTML pages.
The page
 navigation headers and footers are styled using CSS stylesheet
 pageNavigation.css found in
 ebookc_install_dir/xsl/common/resources/.

 	reservedfilenames

 	One or more file basenames (without any extension)
 separated by newline characters.
Default: none.

 	Do not generate HTML files having any of the specified
 names.

 	resourcedirname

 	File basename without any extension.
Default:
 "_res".

 	Specifies the name of the directory where all the
 resources (e.g. image files, CSS files) referenced in the output
 HTML pages are stored.

 	resourcedirnamefor

 	URL or file path.

 	Same as resourcedirname except that the name
 of the resource directory is computed out of the option value.
 For example, sets the name of the resource directory to
 "my doc_files" when passed
 "file:/tmp/my%20doc.epub" or
 "C:\temp\my doc.epub".

 	singlepage

 	true |
 false
Default:
 false.

 	Generate a single HTML page.

 	suppressindex

 	true |
 false
Default:
 false.

 	Suppress <index/> from the ebook
 specification before generating the output HTML
 pages.
Setting suppressindex to
 true is generally needed when
 indexfilename is also specified.

 	suppresstoc

 	true | false
Default:
 false.

 	Suppress <toc/> from the ebook specification before
 generating the output HTML pages.

 	tocframefilename

 	File basename without any extension.
Default:
 "_toc_frame".

 	Specifies the name of the “TOC frame” file generated by
 first pass.

 	validate

 	true |
 false
Default: true
 when invoked by the ebookc command-line utility,
 false otherwise.

 	Validate the ebook specification against the W3C
 XML schema found in
 ebookc_install_dir/schema/ebook.xsd.

 	-t
 XSLT_stylesheet_URL_or_file

 	-xslt XSLT_stylesheet_URL_or_file

 	Use the specified custom XSLT stylesheet rather than the stock
 one.

 	-f html1 | html | webhelp | epub |
 ps | pdf | rtf | odt | wml | docx | fo | frameset

 	-format html1 | html | webhelp | epub | ps | pdf | rtf
 | odt | wml | docx | fo | frameset

 	Explicitly specifies the output format. By default, the output
 format is determined using the extension of
 output_file_or_directory.
 Table 9-2. Output formats

 	Output format

 	Description

 	html1

 	Single XHTML5 page.Automatically detected filename
 extensions are: "html", "htm",
 "xhtml", "xhtm" or
 "xht".

 	html

 	Multiple XHTML5 pages.

 	webhelp

 	Web
 Help

 	epub

 	EPUB 3

 	ps

 	PostScript[2]

 	pdf

 	PDF[2]

 	rtf

 	RTF (can be opened in Word 2000+)[3]

 	wml

 	WordprocessingML (can be opened in Word 2003+)[3]

 	docx

 	Office Open XML (.docx, can be opened in Word
 2007+)[3]

 	odt

 	OpenOffice (.odt, can be opened in
 OpenOffice/LibreOffice 2+)[3]

 	fo

 	XSL-FO. Mainly used for debugging and
 testing purposes.

 	frameset

 	Multi-page XHTML5 with a frameset and a “TOC frame”.
 Mainly used for debugging and testing purposes.

 	-o options_URL_or_file

 	-option options_URL_or_file

 	This option lets the user specify a text file containing
 command-line arguments. This text file has the same format as the ebookc.options file.Example:
$ ebookc -v -o go.options go.ebook go.epub
If
 go.options contains:
-p epub-identifier urn:isbn:0451450523
-p cover-image /home/john/artwork/playing_go.png
then this is
 equivalent to running:
$ ebookc -v -p epub-identifier urn:isbn:0451450523 \
 -p cover-image /home/john/artwork/playing_go.png \
 go.ebook go.epub

 	-v

 	-vv

 	-vvv

 	Turn verbosity on. More Vs means more verbose.

Command-line options used to configure
 ebookc

 	-fop executable_file

 	Specifies the location of the fop shell script
 (fop.bat on Windows).Shorthand
 for:
-foconverter FOP pdf '"executable_file" -q -r -fo "%I" -pdf "%O"'
-foconverter FOP ps '"executable_file" -q -r -fo "%I" -ps "%O"'
No matter the
 order of command-line options, option -foconverter has
 priority over options -fop, -xep,
 -ahf, -xfc, which is turn have priority over
 bundled XSL-FO converters (such as the Apache
 FOP contained in ebookc-N_N_N-plus-fop.zip
 distributions).

 	-fopconf
 configuration_file

 	Specifies the location of an Apache FOP configuration file. A relative file path is relative to the current working
 directory. Ignored unless option
 -fop is also specified.

 	-xep executable_file

 	Specifies the location of the xep shell script
 (xep.bat on Windows).Shorthand
 for:
-foconverter XEP pdf '"executable_file" -quiet -valid -fo "%I" -pdf "%O"'
-foconverter XEP ps '"executable_file" -quiet -valid -fo "%I" -ps "%O"'

 	-ahf executable_file

 	Specifies the location of AHFCmd.exe
 (run.sh on platforms other than Windows).Shorthand
 for:
-foconverter AHF pdf '"executable_file" -x 3 -p @PDF -d "%I" -o "%O"'
-foconverter AHF ps '"executable_file" -x 3 -p @PS -d "%I" -o "%O"'

 	-ahfconf
 configuration_file

 	Specifies the location of an Antenna House Formatter configuration file. A relative file path
 is relative to the current working directory. Ignored unless option -ahf is also specified.

 	-xfc executable_file

 	Specifies the location of the fo2rtf shell script
 (fo2rtf.bat on Windows).Suffice to specify the location of fo2rtf.
 Using this location, ebookc infers the locations of
 fo2wml, fo2docx and fo2odt.

Shorthand for:
-foconverter XFC rtf '"fo2rtf_executable_file" "%I" "%O"'
-foconverter XFC wml '"fo2wml_executable_file" "%I" "%O"'
-foconverter XFC docx '"fo2docx_executable_file" "%I" "%O"'
-foconverter XFC odf '"fo2odt_executable_file" "%I" "%O"'
XMLmind
 XSL-FO Converter Evaluation Edition (download page) generates output containing
 random duplicate letters. This makes this edition useless for
 any purpose other than evaluating XMLmind XSL-FO Converter. Of course,
 this does not happen with XMLmind XSL-FO Converter Professional
 Edition!

 	-foconverter
 processor_name target_format command

 	Register specified XSL-FO
 converter with ebookc, a lower-level alternative to using
 -xep, -fop, -ahf or
 -xfc. Example: -foconverter XFC rtf '/opt/xfc/bin/fo2rtf "%I" "%O"'
Note
 that this option can be specified several times with different values in
 the same command-line.
This low-level option may be used for
 example to specify a configuration file for Apache FOP:
-foconverter FOP pdf \
'/opt/fop/fop -c /home/john/docs/fop.conf -q -r -fo "%I" -pdf "%O"'
No matter the
 order of command-line options, option -foconverter has
 priority over options -fop, -xep,
 -ahf, -xfc, which is turn have priority over
 bundled XSL-FO converters (such as the Apache
 FOP contained in ebookc-N_N_N-plus-fop.zip
 distributions).

Command-line options used to debug
 ebookc

 	-dryrun

 	Use ebookc as a validator, and most notably check
 cross-references. That is, do not generate any file; just report errors
 if any.

 	-errout

 	Output all messages, including errors and warnings, to
 stdout.

 	-ignoreoptionsfile

 	Do not load the ebookc.options options file. See below
 The ebookc.options
 file.

 	-keepfo

 	When generating PDF, RTF, DOCX, etc, do not delete the temporary
 XSL-FO file.

 	-keepforesources
 true|yes|on|1 |
 false|no|off|0

 	When generating XSL-FO, PDF, RTF, DOCX, etc, do not delete the
 generated resource directory.By default, -keepfo implies
 -keepforesources true.

 	-version

 	Print version number and exit.

The ebookc.options file

It is also possible to specify command-line options in the
 ebookc.options options file. The content of
 this plain text file, encoded in the native encoding of the platform (e.g.
 Windows-1252 on a Western Windows PC), is automatically loaded
 by ebookc each time this command is executed. The content of
 this file, command-line options separated by whitespace, is prepended
 to the options specified in the command-line.
Example: If
 ebookc.options contains:
-v -xep C:\xep\xep.bat
Running:
~/docsrc$ ebookc userguide.ebook out\userguide.pdf
is
 equivalent to running:
~/docsrc$ ebookc -v -xep C:\xep\xep.bat userguide.ebook out\userguide.pdf
The
 ebookc.options options file is found in the ebookc
 user preferences directory. This directory is:

 	$HOME/.ebookc/ on Linux.

 	$HOME/Library/Application
 Support/XMLmind/ebookc/ on the Mac.

 	%APPDATA%\XMLmind\ebookc\ on Windows.
 Example:
 C:\Users\john\AppData\Roaming\XMLmind\ebookc\.

The ebookc.options options file is mainly useful to
 configure ebookc once for all by specifying values for the -fop, -xep, -xfc, -ahf options.
Example:
-v
-xep E:\opt\xep\xep.bat
-fop E:\opt\fop-2.10\fop\fop.bat
-xfc "E:\opt\xfc_eval_java-6_4_3\bin\fo2rtf.bat"

 	Relative filenames found in this file are relative to the current
 working directory, and not to the ebookc.options options
 file. Therefore it is recommended to always specify absolute
 filenames.

 	No comments (e.g. lines starting with '#') are allowed
 in ebookc.options. Options must be separated by
 whitespace.

 	In the above example, FOP is declared after XEP. This implies
 that it is FOP and not XEP, which will be used by ebookc to generate PDF
 and PostScript®.

 	An XSL-FO processor tend to consume a lot
 of memory. If the ebook compilation fails with an out-of-memory error,
 you need to edit the xep (xep.bat), fop
 (fop.bat), fo2xxx
 (fo2xxx.bat) scripts in order to increase the
 maximum amount of memory that the Java™ runtime may
 allocate. This is done by using the -Xmx option of the
 Java™ command-line. Example:
 "java ... -Xmx512m ...".

 	Starting from Java™ 1.6.0_23,
 converting XML documents to PDF using RenderX XEP randomly fails with
 false XSL-FO errors (e.g. attribute "space-before" may not be
 empty). This problem seems specific to the 64-bit runtime. The
 workarounds for the above bug ("renderx #22766") are:

 	Use a 32-bit Java™ runtime.

 	OR Use a 64-bit Java™ runtime older than
 1.6.0_23.

 	OR Specify option -valid in the xep
 command-line. Note that this workaround is automatically used when
 you specify which RenderX XEP executable to use by the means of the
 -xep command-line
 option.

[1] In other words, when using option
 -f frameset, ebookc stops after its first
 pass.
[2] Requires an XSL-FO
 processor such as Apache FOP, RenderX
 XEP or Antenna House Formatter to have been installed and
 registered with XMLmind Ebook Compiler (for example, using option
 -foconverter).

[3] Requires XMLmind XSL-FO Converter to have been installed and
 registered with XMLmind Ebook Compiler (using option -xfc).

Chapter 10. XSLT stylesheets parameters
Table of Contents
	10.1. Parameters of the XSLT stylesheets used to convert an ebook
 specification to EPUB
	10.2. Parameters of the XSLT stylesheets used to convert an ebook
 specification to Web Help
	10.3. Parameters of the XSLT stylesheets used to convert an ebook
 specification to XSL-FO	10.3.1. Specifying a header or a footer

10.1. Parameters of the XSLT stylesheets used to convert an ebook
 specification to EPUB

 	Parameter

 	Value

 	Default Value

 	Description

 	cover-image

 	URI. If the URI is relative, it is relative to the current
 working directory of the user.

 	None.

 	Specifies an image file which is to be used as the cover page of
 the EPUB file. This image must be a PNG or JPEG image. Its size must
 not exceed 1000x1000 pixels.In theory, EPUB 3 also accepts SVG
 1.1 cover images.

 	epub-identifier

 	String

 	Dynamically generated UUID URN.

 	A globally unique identifier for the generated EPUB document
 (typically the permanent URL of the EPUB document).

 	epub2-compatible

 	'no' | 'yes'

 	'yes'

 	By default, the EPUB 3 files generated by ebookc
 are made compatible with EPUB 2 readers. Specify 'no'
 if you don't need this compatibility.

 	omit-toc-root

 	'no' | 'yes'

 	'yes'

 	Specify 'yes' if you want the title of the book to
 be the root of the EPUB TOC.

10.2. Parameters of the XSLT stylesheets used to convert an ebook
 specification to Web Help
Parameters starting with
 "wh-" are pseudo-parameters. They may or may not be
 passed to the XSLT stylesheets, but the important thing to remember is that
 they are also interpreted by ebookc itself. Consequently you
 cannot specify them in an XSLT stylesheet which customizes the stock
 ones.

 	Parameter

 	Value

 	Default Value

 	Description

 	omit-toc-root

 	'no' | 'yes'

 	'yes'

 	Specify 'yes' if you want the title of the book to
 be the root of the Web Help TOC.

 	wh---CSS_VAR_NAME

 	String. A valid CSS property value.

 	No default.

 	This kind of parameter may be used to override any of the
 default values of the CSS variables specified in any of the
 NNtheme.css template files (all
 found in
 ebookc_install_dir/whc_template/_wh/).

For example, the main NNtheme.css template file:
body {
 ...
 --navigation-width: 33%;
 ...
}
The wh---navigation-width CSS variable is used as
 follows in NNcommon.css, another CSS template
 file:
#wh-navigation {
 ...
 width: var(--navigation-width);
 ...
}
Therefore parameter wh---navigation-width may be used
 to give the navigation side of the generated Web Help a different
 initial width. Example:
 -p wh---navigation-width "25%".
More examples in
 "XMLmind Web Help Compiler Manual, Getting
 started".

 	wh-collapse-toc

 	'no' | 'yes'

 	'no'

 	Specifies whether the Web Help TOC should be initially
 collapsed.

 	wh-index-numbers

 	'no' | 'yes'

 	'no'

 	Specifies whether words looking like numbers are to be
 indexed.Examples of such number-like words: 3.14,
 3,14, 3times4equals12, +1,
 -1.0, 3px, 1,2cm,
 100%, 1.0E+6,
 1,000.00$.

 	wh-inherit-font-and-colors

 	'no' | 'yes'

 	'yes'

 	When wh-inherit-font-and-colors is set to
 'no', the navigation pane of the generated Web Help
 uses fonts and colors of its own, which will generally differ from
 those used for the content of the Web Help.
Setting
 wh-inherit-font-and-colors to 'yes' lets
 you use for the navigation pane the same fonts and colors as those
 used for the content of the Web Help.
So basically this
 parameter is a shorthand for:
-p wh---navigation-font-family inherit¬
-p wh---navigation-font-size inherit¬
-p wh---navigation-color inherit¬
-p wh---navigation-background-color inherit
See above wh---CSS_VAR_NAME
 parameters.

 	wh-jquery

 	Relative or absolute URI. A relative URI is relative to the URI
 of a page of the Web Help.

 	Absolute URI of the corresponding file found on the Google
 CDN.

 	Specifies the location of the JavaScript file containing jQuery.Example:
 https://code.jquery.com/¬
jquery-3.7.1.slim.min.js.
Specifying
 an "https:" URL is recommended when the generated Web
 Help is stored on an HTTPS server.

 	wh-local-jquery

 	'no' | 'yes'

 	'no'

 	Specifies whether all jQuery files should be copied to
 _wh/jquery/, where _wh/ is the directory
 containing the other Web Help files.By default, the jQuery files
 are accessed from the Web (typically from a
 CDN).
Note that this parameter is applied after
 jQuery has been possibly customized using parameter
 wh-jquery. For example,
 "-p wh-jquery https://code.jquery.com/jquery-3.7.1.min.js"
 copies a file downloaded from https://code.jquery.com/ to
 _wh/jquery/.

 	wh-layout

 	The name of a layout.

 	'classic'

 	Selects a layout for the generated Web Help.For now, only 3
 layouts are supported: 'classic', 'simple'
 and 'corporate'.

 	wh-responsive-ui

 	'no' | 'yes'

 	'yes'

 	Specifies whether the generated Web Help should be
 “responsive”, that is, whether it should adapt its layout to the
 size of the screen.

 	wh-ui-language

 	"browser" or "document" or a language
 code conforming RFC 3066. Examples: de,
 fr-CA.

 	'browser'

 	Specifies which language should be used for the messages (tab
 labels, button tool tips, etc) of the generated Web
 Help.
Default value "browser" means that this
 language is the one used by the Web browser for its own messages.
 This language may often be specified in the user preferences of the
 Web browser.
Value "document" means that the
 language of the document should be used.
A language code such
 as en, en-US, es, es-AR, etc,
 may be used to explicitly specify which language should be
 used.

 	wh-use-stemming

 	'no' | 'yes'

 	'yes'

 	Specifies whether stemming
 should be used to implement the search facility.By default,
 stemming is used whenever possible, that is,

 	when the main language of the XHTML pages to be compiled can
 be determined;

 	when this main language is one of: Danish, Dutch, English,
 Finnish, French, German, Hungarian, Italian, Norwegian,
 Portuguese, Russian, Spanish, Swedish, Romanian, Turkish.

The main language of the document is specified by the
 @xml:lang attribute found on the root element of the
 ebook specification being compiled; otherwise, it is assumed to be
 "en".

 	wh-user-css

 	Filename or absolute URI of a CSS file. A relative filename is
 relative to the current working directory.

 	None.

 	Specifies the user's CSS stylesheet which is to be added to an
 XHTML page decorated by the compiler.This file is copied to
 output_directory/_wh/user/.
Sample user's
 CSS wh_resources/header_footer.css as
 used in the following example:
-p wh-user-header¬
wh_resources/header.html
-p wh-user-footer¬
wh_resources/footer.html
-p wh-user-css¬
wh_resources/header_footer.css
-p wh-user-resources¬
wh_resources/header_footer_files

 	wh-user-footer

 	Filename or absolute URI of an XHTML file. A relative filename
 is relative to the current working directory.

 	None.

 	Specifies the user's footer which is to be added to each page of
 the Web Help.The content of the body element of
 user-footer is inserted as is in the
 <div id="wh-footer"> found in each page of the
 Web Help.
Same remark as for parameter
 user-header about the resources referenced by a user's
 footer.
Sample user's footer wh_resources/footer.html as used in
 the following example:
-p wh-user-header¬
wh_resources/header.html
-p wh-user-footer¬
wh_resources/footer.html
-p wh-user-css¬
wh_resources/header_footer.css
-p wh-user-resources¬
wh_resources/header_footer_files
More examples in "XMLmind Web Help Compiler Manual, Getting
 started".

 	wh-user-header

 	Filename or absolute URI of an XHTML file. A relative filename
 is relative to the current working directory.

 	None.

 	Specifies the user's header which is to be added to each page of
 the Web Help.The content of the body element of
 user-header is inserted as is in the
 <div id="wh-header"> found in each page of the
 Web Help.
If a user's header references resources (e.g. image
 files), then these resources must either be referenced using
 absolute URLs or these resources must be found in a user's resource
 directory and parameter user-resources must be
 specified.
Example:

 	The user's resource directory is called
 header_footer_files/ and contains
 header_footer_files/logo200x100.png.

 	ebookc is passed parameters
 -p user-resources PATH_TO/header_footer_files
 and -p user-header PATH_TO/header.html.

 	header.html looks like this:<html>
...
<body>
...
<img
src="_wh/user/header_footer_files/¬
logo200x100.png" />
...
</body>
</html>
Notice the path used to reference
 logo200x100.png.

Sample user's header wh_resources/header.html as used in
 the following example:
-p wh-user-header¬
wh_resources/header.html
-p wh-user-footer¬
wh_resources/footer.html
-p wh-user-css¬
wh_resources/header_footer.css
-p wh-user-resources¬
wh_resources/header_footer_files
More examples in "XMLmind Web Help Compiler Manual, Getting
 started".

 	wh-user-resources

 	Filename or absolute "file:" URI of a
 directory. URI schemes other than "file" (e.g.
 "http") are not supported for this parameter. A
 relative filename is relative to the current working directory.

 	None.

 	Specifies a user's resource directory which is to be recursively
 copied to output_directory/_wh/user/.This
 directory typically contains image files referenced by the user's
 header, footer or CSS stylesheet.
Sample user's resource
 directory wh_resources/header_footer_files/
 as used in the following example:
-p wh-user-header¬
wh_resources/header.html
-p wh-user-footer¬
wh_resources/footer.html
-p wh-user-css¬
wh_resources/header_footer.css
-p wh-user-resources¬
wh_resources/header_footer_files
More examples in "XMLmind Web Help Compiler Manual, Getting
 started".

System parameters
Such system parameters are not
 intended to be specified by the end-user. Such system parameters are
 documented here only because the end-user may see them referenced in some
 dialog boxes, in some configuration files or in the source code of the XSLT
 stylesheets.

 	Parameter

 	Value

 	Default Value

 	Description

 	whc-index-basename

 	URL basename

 	'__tmp__index.whc_ndx'

 	Basename of the Index XML input file of XMLmind Web Help
 Compiler.

 	whc-toc-basename

 	URL basename

 	'__tmp__toc.whc_toc'

 	Basename of the TOC XML input file of XMLmind Web Help
 Compiler.

10.3. Parameters of the XSLT stylesheets used to convert an ebook
 specification to XSL-FO

 	Parameter

 	Value

 	Default Value

 	Description

 	apply-css-styles

 	'no' | 'yes'

 	'yes'

 	Specifies whether CSS styles specified in XHTML
 style attributes, style and
 link elements also apply to the XSL-FO file.
 Depending on the context, the following CSS properties are
 converted to their equivalent XSL-FO attributes. The corresponding
 shorthand CSS properties are supported too. Any other CSS
 property is ignored. Generated content (:before,
 :after) is ignored too.

 	margin-top, margin-right,
 margin-bottom, margin-left.

 	padding-top, padding-right,
 padding-bottom, padding-left.

 	border-top-style,
 border-right-style,
 border-bottom-style,
 border-left-style.

 	border-top-width,
 border-right-width,
 border-bottom-width,
 border-left-width.

 	border-top-color,
 border-right-color,
 border-bottom-color,
 border-left-color.

 	background-color,
 background-image, background-repeat,
 background-position.

 	color.

 	font-family, font-style,
 font-weight, font-size.

 	text-decoration.

 	text-align.

 	text-indent.

 	vertical-align.

 	line-height.

 	list-style-type,
 list-style-position,
 list-style-image.

 	width, height.

 	caption-side.

 	border-spacing.

Note that styles specified this way supersede all the
 other ways to specify the presentation in the output file, that
 is, parameters like base-font-size or the
 presentation attributes (xsl:attribute-set) specified
 in the XSLT stylesheets that generate the XSL-FO file.

 	base-font-size

 	Length in pt

 	'10pt'

 	The size of the font used for most body elements (paragraphs,
 tables, lists, etc). All the other font sizes are computed
 relatively to this font size.

 	base-line-height

 	A valid line height

 	'10'

 	The line height used for most body elements (paragraphs, tables,
 lists, etc). All the line heights are computed relatively to this
 line height.

 	external-href-after

 	String

 	']'

 	Appended after the external URL referenced by an a
 element. Ignored unless show-external-links='yes'.

 	external-href-before

 	String

 	' ['

 	Separates the text of an a element from the
 external URL it points to. Ignored unless show-external-links='yes'.

 	font-family

 	One or more font families separated by commas

 	'serif'

 	The font family used by default for all elements.

 	footer-center

 	A mix of text and variables.

 	See next column.

 	Specifies the contents of the central part of a page footer. See
 Section 10.3.1. Specifying a header or a footer.Default value:
two-sides even:: {{chapter-title}};;
two-sides body odd:: {{section1-title}};;
one-side:: {{chapter-title}}

 	footer-center-width

 	String representing an integer larger than or equal to 1.

 	'6'

 	Specifies the proportional width of the central part of a page
 footer. See Section 10.3.1. Specifying a header or a footer.

 	footer-left

 	A mix of text and variables.

 	See next column.

 	Specifies the contents of the left part of a page footer. See Section 10.3.1. Specifying a header or a footer.Default value:
two-sides even:: {{page-number}}

 	footer-left-width

 	String representing an integer larger than or equal to 1.

 	'2'

 	Specifies the proportional width of the left part of a page
 footer. See Section 10.3.1. Specifying a header or a footer.

 	footer-right

 	A mix of text and variables.

 	See next column.

 	Specifies the contents of the right part of a page footer. See
 Section 10.3.1. Specifying a header or a footer.Default value:
two-sides first||odd:: {{page-number}};;
one-side:: {{page-number}}

 	footer-right-width

 	String representing an integer larger than or equal to 1.

 	'2'

 	Specifies the proportional width of the right part of a page
 footer. See Section 10.3.1. Specifying a header or a footer.

 	footer-separator

 	'no' | 'yes'

 	'yes'

 	Specifies whether an horizontal rule should be drawn above the
 page footer. See Section 10.3.1. Specifying a header or a footer.

 	header-center

 	A mix of text and variables.

 	'{{document-title}}'

 	Specifies the contents of the central part of a page header. See
 Section 10.3.1. Specifying a header or a footer.

 	header-center-width

 	String representing an integer larger than or equal to 1.

 	'6'

 	Specifies the proportional width of the central part of a page
 header. See Section 10.3.1. Specifying a header or a footer.

 	header-left

 	A mix of text and variables.

 	''

 	Specifies the contents of the left part of a page header. See Section 10.3.1. Specifying a header or a footer.

 	header-left-width

 	String representing an integer larger than or equal to 1.

 	'2'

 	Specifies the proportional width of the left part of a page
 header. See Section 10.3.1. Specifying a header or a footer.

 	header-right

 	A mix of text and variables.

 	''

 	Specifies the contents of the right part of a page header. See
 Section 10.3.1. Specifying a header or a footer.

 	header-right-width

 	String representing an integer larger than or equal to 1.

 	'2'

 	Specifies the proportional width of the right part of a page
 header. See Section 10.3.1. Specifying a header or a footer.

 	header-separator

 	'no' | 'yes'

 	'yes'

 	Specifies whether an horizontal rule should be drawn below the
 page header. See Section 10.3.1. Specifying a header or a footer.

 	hyphenate

 	'no' | 'yes'

 	'no'

 	Specifies whether words may be hyphenated.

 	justified

 	'no' | 'yes'

 	'no'

 	Specifies whether text (e.g. in paragraphs) should be justified
 (that is, flush left and right) or just left aligned (that is, flush
 left and ragged right).

 	index-column-count

 	Positive integer.

 	'2'

 	The number of columns of index pages.

 	index-column-gap

 	Length.

 	'2em'

 	The distance which separates columns in index pages.

 	note-icon-height

 	Length

 	'0.333in'

 	The height of a note icon. See parameter use-note-icon.

 	note-icon-width

 	Length

 	'0.333in'

 	The width of a note icon. See parameter
 use-note-icon.

 	page-orientation

 	'portrait' | 'landscape'

 	'portrait'

 	The orientation of the printed page.

 	page-ref-after

 	String

 	']'

 	Appended after the page number pointed to by an a
 element. Ignored unless show-xref-page='yes'.

 	page-ref-before

 	String

 	' ['

 	Separates the text of an a element from the page
 number it points to. Ignored unless show-xref-page='yes'.

 	paper-type

 	Allowed values are: 'Letter', 'Legal',
 'Ledger', 'Tabloid', 'A0',
 'A1', 'A2', 'A3',
 'A4', 'A5', 'A6',
 'A7', 'A8', 'A9',
 'A10', 'B0', 'B1',
 'B2', 'B3', 'B4',
 'B5', 'B6', 'B7',
 'B8', 'B9', 'B10',
 'C0', 'C1', 'C2',
 'C3', 'C4', 'C5',
 'C6', 'C7', 'C8',
 'C9', 'C10' (case-insensitive).

 	'A4'

 	A convenient way to specify the size of the printed page.It
 is also possible to specify a custom paper type by ignoring the
 paper-type parameter and directly specifying the page-width and page-height parameters.

 	pdf-outline

 	'no' | 'yes'

 	'no'

 	Specifies whether PDF bookmarks should be generated.
 Supported by the 'XEP', 'FOP' and
 'AHF' XSL-FO processors. Not relevant, and thus ignored
 by 'XFC'.

 	show-external-links

 	'no' | 'yes'

 	'no'

 	Specifies whether the external URL referenced by an
 a element should be displayed right after the text
 contained by this element. Example:
 show-external-links='yes' causes Oasis to be
 rendered as follows:
 Oasis [http://www.oasis-open.org/].

 	show-map-links

 	'no' | 'yes'

 	'yes'

 	Specifies whether a numbered list should be generated for a
 XHTML map element, with one list item per
 area element. A list item contains the link
 specified by the area element. No list items are
 generated for “dead areas” (area elements specifying no
 link at all).

 	show-xref-page

 	'no' | 'yes'

 	'no'

 	Specifies whether the page number corresponding to the internal
 link target referenced by an a element should be
 displayed right after the text contained by this element.
 Example: show-xref-page='yes' causes Introduction to be rendered
 as follows: Introduction [3].

 	two-sided

 	'no' | 'yes'

 	'no'

 	Specifies whether the document should be printed double
 sided.

 	ul-li-bullets

 	One or more bullet characters separated by spaces

 	'• –'

 	Specify which bullet character to use for an
 ul/li element. Additional characters are
 used for nested li elements. For example, if
 ul-li-bullets="* - +", "*" will be used
 for ul/li elements, "-" will
 be used for ul/li elements contained in a
 ul/li element and "+" will be
 used for ul/li elements nested in two
 ul/li elements.

 	use-note-icon

 	'no' | 'yes'

 	'no'

 	Specifies whether an icon should be added to
 blockquote elements having a class
 attribute containing role-note,
 role-attention, role-caution,
 role-danger, role-fastpath,
 role-important, role-notice,
 role-remember, role-restriction,
 role-tip, role-trouble,
 role-warning.

 	use-note-label

 	'no' | 'yes'

 	'no'

 	Specifies whether a title should be added to
 blockquote elements having a class
 attribute containing role-note,
 role-attention, role-caution,
 role-danger, role-fastpath,
 role-important, role-notice,
 role-remember, role-restriction,
 role-tip, role-trouble,
 role-warning.

 	watermark

 	Allowed values are one or more of 'blank',
 'title', 'toc', 'booklist',
 'frontmatter', 'body',
 'backmatter', 'index', 'all'
 separated by whitespace.

 	'all'

 	Specifies which pages in the output document are to be given a
 watermark. By default, all pages are given a watermark. If for
 example, parameter watermark is set to
 'frontmatter body backmatter', then only the pages
 which are part of the front matter, body and back matter of the
 output document are given a watermark. The title page, TOC pages,
 etc, are not given a watermark.
No effect unless parameter watermark-image
 is specified.

 	watermark-image

 	URI. If the URI is relative, it is relative to the current
 working directory of the user.

 	No default.

 	Specifies an image file which is to be used as a watermark in
 all the pages comprising the output document. See also parameter watermark.

 	xfc-render-as-table

 	A string containing zero or more roles or element names
 separated by whitespace.Supported roles and element names are:
 admonition, aside,
 blockquote, footer, header,
 nav.

 	'admonition aside blockquote'

 	Specifies whether XMLmind XSL-FO Converter should render the
 fo:blocks representing specified elements as
 fo:tables.This parameter enables a workaround for a
 limitation of XMLmind XSL-FO Converter: a fo:block
 having a border and/or background color and containing several other
 blocks, lists or tables is very poorly rendered in RTF, WML, DOCX
 and ODT.

Inserting a
 <?pagebreak?> processing-instruction in the XHTML5 source
 between paragraphs, notes, tables, lists, etc, may be used to force a page
 break when generating any of the output formats which uses XSL-FO as an
 intermediate format (PDF, RTF, DOCX, etc).

Page layout parameters

 	Parameter

 	Value

 	Default Value

 	Description

 	body-bottom-margin

 	Length

 	'0.5in'

 	See Figure 10-1. Page
 areas below.

 	body-top-margin

 	Length

 	'0.5in'

 	See Figure 10-1. Page
 areas below.

 	footer-height

 	Length

 	'0.4in'

 	See Figure 10-1. Page
 areas below.

 	header-height

 	Length

 	'0.4in'

 	See Figure 10-1. Page
 areas below.

 	page-bottom-margin

 	Length

 	'0.5in'

 	See Figure 10-1. Page
 areas below.

 	page-height

 	Length. Example: '297mm'.

 	Depends on parameter paper-type.

 	The height of the printed page.

 	page-inner-margin

 	Length

 	If parameter two-sided is specified as
 'yes' then '1.25in' otherwise
 '1in'.

 	See Figure 10-1. Page
 areas below.

 	page-outer-margin

 	Length

 	If parameter two-sided is specified as
 'yes' then '0.75in' otherwise
 '1in'.

 	See Figure 10-1. Page
 areas below.

 	page-top-margin

 	Length

 	'0.5in'

 	See Figure 10-1. Page
 areas below.

 	page-width

 	Length. Example: '8.5in'.

 	Depends on parameter paper-type.

 	The width of the printed page.

Figure 10-1. Page
 areas[image: Page areas]
System
 parameters
Such system parameters are not
 intended to be specified by the end-user. Such system parameters are
 documented here only because the end-user may see them referenced in some
 dialog boxes, in some configuration files or in the source code of the XSLT
 stylesheets.

 	Parameter

 	Value

 	Default Value

 	Description

 	foProcessor

 	'FOP' | 'XEP' | 'XFC'
 |'AHF'

 	Automatically set by the application hosting XMLmind Ebook
 Compiler

 	The name of the XSL-FO processor used to convert the XSL-FO file
 generated by the XSLT stylesheets to the target output format.

 	img-src-path

 	URI ending with '/'

 	''

 	If this parameter is not empty and if the value of the
 src attribute is a relative URI, then this parameter is
 prepended to the value of the src attribute. This
 low-level alternative to resolve-img-src='yes' also
 allows the generation of an XSL-FO file where all the references to
 graphic files are absolute URIs.

 	outputFormat

 	String. Examples: 'ps', 'pdf',
 'rtf', 'wml', 'docx',
 'odt'.

 	Automatically set by the application hosting XMLmind Ebook
 Compiler

 	The file extension of the target output file.

 	resolve-a-href

 	'no' | 'yes'

 	'no'

 	In the XSL-FO file, convert relative URIs contained in the
 href attribute of a elements to absolute
 URIs. This is done by resolving the relative URI against the base of
 the a element.

 	resolve-img-src

 	'no' | 'yes'

 	'no'

 	In the XSL-FO file, convert relative URIs contained in the
 src attribute of img elements to absolute
 URIs. This is done by resolving the relative URI against the base of
 the img element.

 	screen-resolution

 	Number

 	96.0

 	Screen resolution in DPI. Used to convert px to
 pt.

 	xsl-resources-directory

 	URL

 	'resources/' resolved against the directory which
 contains the XSLT stylesheets.

 	These XSLT stylesheets generate files which reference resources
 such as note icons. This parameter specifies the directory
 containing such resources.

10.3.1. Specifying a header or a footer
The header or the footer of a generated PDF, RTF, DOCX, etc, page
 has 3 columns.
Figure 10-2. Layout of a
 header[image: Layout of a header]
The width of these
 columns may be specified using the header-left-width, header-center-width, header-right-width parameters for
 the header and the footer-left-width, footer-center-width, footer-right-width parameters for
 the footer.
The width of a column is specified as an integer which is
 larger than or equal to 1. This value is the proportional width of the
 column. For example, if the left column has a width equal to 2 and the right
 column has a width equal to 4, this simply means that the right column is
 twice (4/2 = 2) as wide as the left column.
The contents of these
 columns may be specified using the header-left, header-center, header-right parameters for the
 header and the footer-left, footer-center, footer-right parameters for the
 footer.
When header-left, header-center,
 header-right are all specified as the empty string, no header
 is generated. When footer-left, footer-center,
 footer-right are all specified as the empty string, no footer
 is generated.
The content of a column is basically a mix of text and
 variables. Example: "Page {{page-number}} of
 {{page-count}}".
Supported variables are:

 	{{document-title}}

 	The title of the document.

 	{{document-date}}

 	The publication date of the document.The value of this variable
 comes from the meta element having any of the following
 name attributes: "dc.date",
 "dcterms.issued", "dcterms.modified",
 "dcterms.created", if found in the head
 element of the ebook specification. If the ebook specification does not
 contain such meta elements then the current date is
 used.
The value of the content attribute of the
 meta element is expected be something like
 YYYY-MM-DD, because it is parsed and then formatted according to
 the xml:lang of the ebook specification. For example, if
 content="2017-02-23", with xml:lang="en", it
 gives: "February 02, 2017" and with xml:lang="fr", it
 gives: "02 février 2017".

 	{{chapter-title}}

 	The title of the current part, chapter, appendices or appendix.

 	{{section1-title}}

 	The title of the current part, chapter, appendices or appendix
 or section 1.

 	{{division-title}}

 	The title of the current document divisions. All the document
 divisions are guaranteed to have a corresponding
 {{division-title}}. Even automatically generated divisions
 such as <toc/> or <index/> have a
 corresponding {{division-title}}.

 	{{page-number}}

 	Current page number within the current document part (front matter,
 body matter or back matter) .

 	{{page-count}}

 	Total number of pages of the current document part (front matter,
 body matter or back matter).

 	{{break}}

 	A line break.

 	{{image(URI)}}

 	An image having specified URI. A relative URI is resolved against
 the current working directory. Example:
 "{{image(artwork/logo.svg)}}".

 	{{page-sequence}}

 	Not for production use. Inserts in the header/footer the name of the
 current page sequence . Lets the author learn which name to use in
 a conditional header or footer. See below.

Conditional headers and
 footers
The default value of header-center is
 '{{document-title}}'. This means that each page of the
 generated PDF, RTF, etc, file will have the document title centered on its
 top. But what if you want the pages containing the Table of Contents have a
 "Contents" header? Is there a way to specify: use "Contents" for the pages
 containing the Table of Contents and use the title of the document for any
 other page?
This is done by specifying the following conditional value
 for parameter
 header-center: 'toc:: Contents;;
 {{document-title}}'.
A conditional value may contain one or
 more cases separated by ";;". Each case is tested against the
 page being generated. The first case which matches the page being generated
 is the one which is selected.
conditional_value --> case [";;" case]*

case --> [condition "::"]* value

condition --> [test_page_sequence]?
 & [S test_page_layout]?
 & [S test_page_side]?
Let's suppose you also want
 the the pages containing the Index have a "Index" header. Specifying
 'toc:: Contents;; {{document-title}};; index:: Index' won't
 work as expected because the second case (having no condition at all)
 matches any page, including the Index pages. You need to specify:
 'toc:: Contents;; index:: Index;;
 {{document-title}}'.
Let's remember that variable {{division-title}} is
 substituted with the title of the current document division, including
 automatically generated document divisions such as toc and
 index.
Therefore our conditional value is better
 expressed as: 'toc:: index:: {{division-title}};;
 {{document-title}}'. Notice how a case may have several conditions.
 Suffice for any of these conditions to match the page being generated for
 the case to be selected.
Even better, specify 'toc||index::
 {{division-title}};; {{document-title}}'. String "||"
 may be used to separate alternative values to be tested against the page
 being generated.
test_page_sequence --> page_sequence ["||" page_sequence]*

page_sequence --> "title" |
 "toc" |
 "booklist" |
 "frontmatter" |
 "body" |
 "backmatter" |
 "index"
It's not
 difficult to guess that the name of the page sequence corresponding to the
 Table of Contents is toc and that the name of the page sequence
 corresponding to the Index is index. However the simplest way
 to learn what is the name of the page sequence being generated is to
 reference variable {{page-sequence}} in the
 specification of a header or a footer.

Now let's suppose
 that we want to suppress the document title on the first page of a part,
 chapter or appendix. This is specified as follows: 'first body:: ;;
 toc||index:: {{division-title}};; {{document-title}}'.
For now,
 we have only described a condition about the page sequence being generated:
 TOC, Index, etc. In fact, a condition may test up to 3 facets of the page
 being generated:

 	The page sequence to which belongs the page being generated.

 	Whether the page being generated is part of a one-sided or a
 two-sided document.

 	Whether the page being generated is the first page of its sequence,
 has an odd page number or has an even page number.

test_page_layout --> page_layout ["||" page_layout]*

page_layout --> "two-sides" | "one-side"

test_page_side --> page_side ["||" page_side]*

page_side --> "first" | "odd" | "even"
When the document has one side, the only possible
 page side is odd. The other values, first and
 even, are not supported. For example, something like
 'one-side body even:: {{chapter-title}};;' cannot generate any
 text.

The order of the tests is not significant. For
 example, 'first part||chapter||appendix' is equivalent to
 'part||chapter||appendix first'.
Therefore 'first
 body:: ;; toc||index:: {{division-title}};; {{document-title}}' reads
 as follows:

 	Use the empty string for the first page of a part, appendices,
 chapter or appendix.

 	Use the document division title for the pages containing the Table
 of Contents. This title is "Table of Contents", but localized according
 to the main language of the book.

 	Use the document division title title for the pages containing the
 Index. This title is "Index", but localized according to the main
 language of the book.

 	For any other page, use the title of the book.

Everything explained in this section
 applies not only to the contents of a column of a header or footer, but also
 to the proportional width of a column of a header or footer. Example:
 -p footer-right-width "first||odd:: 4;;
 even:: 1".

Appendices
Appendix A. Embedding
 com.xmlmind.ebook.convert.Converter
Quick and easy embedding: embed
 com.xmlmind.ebookc.convert.Converter, the Java™ class which is
 used to implement the ebookc command-line utility.
Converter is the
 object which is at the core of the ebookc command-line utility.
 Its run method accepts the
 same string arguments as the ebookc command-line
 utility.
The full source code of the Embed1 sample is
 found in Embed1.java.

 	Create the Converter.	1
2
3
4
5
6
7
8
9
	StyleSheetCache cache = new StyleSheetCache();

Console console = new Console() {
 public void showMessage(String message, MessageType messageType) {
 System.err.println(message);
 }
};

Converter converter = new Converter(cache, console);

 	StyleSheetCache is a simple cache
 for the ebookc XSLT 2.0 stylesheets. It is a
 thread-safe object which is intended to be shared by several
 Converters.Unlike StyleSheetCache,
 Converter is not thread-safe. Each thread must own its
 Converter. However, the run method of a
 Converter may be invoked several times.

 	Console is
 a very simple interface. Implementing this interface allows to do
 whatever you want with the messages reported by a
 Converter.

 	Configure the Converter.	1
2
3
	if (!converter.registerFOP(path("/opt/fop/fop"))) {
 return 1;
}

 	There are several methods which may be used to register an
 XSL-FO processor with a Converter. From high-level ones
 to low-level ones, these methods are: registerFOP, registerXEP, registerAHF, registerXFC, registerExternalFOConverter, registerFOConverter.

 	Invoke the run method.	1
2
3
4
5
6
7
8
	String[] args = {
 "-v",
 "-p", "pdf-outline", "yes",
 inFile.getPath(),
 outFile.getPath()
};

return converter.run(args);

The run method returns 0 if
 the conversion is successful and an integer greater than 0 otherwise.
 When the conversion fails, errors messages are displayed on the
 Console.

Environment required for running this kind of
 embedding
Aside ".jar" files like
 ebookc.jar, xmlresolver.jar, saxon12.jar,
 etc, which are all listed in
 ebookc_install_dir/doc/manual/embed/build.xml (see
 below), this kind of embedding also needs to access:

 	The W3C XML schemas, schematrons and XML catalogs normally found in
 ebookc_install_dir/schema/.

 	The XSL stylesheets normally found in
 ebookc_install_dir/xsl/.

Therefore the requirements for running this kind of embedding
 are:

 	Use system property xml.catalog.files to
 point to ebookc_install_dir/schema/catalog.xml or to
 an equivalent of this XML catalog.

 	Stock ebookc_install_dir/schema/catalog.xml
 contains the following entry:<rewriteURI uriStartString="ebookc-home:" rewritePrefix="../" />
This
 rewriteURI entry is needed to find the
 ebook.xsd schema and the location of the directory
 containing the XSL stylesheets. Make sure that this entry exists in your
 XML catalogs and that it points to the actual location of the directory
 containing both the schema/ and xsl/
 subdirectories.

Compiling and executing the Embed1
 sample
Compile the Embed1 sample by running ant in
 ebookc_install_dir/doc/manual/html/embed/.
Execute
 the Embed1 sample by running "ant embed1" in
 ebookc_install_dir/doc/manual/html/embed/. This will
 convert ebookc_install_dir/docsrc/manual/manual.ebook to
 ebookc_install_dir/doc/manual/html/embed/manual.pdf,
 using Apache
 FOP.
Note that Embed1.java contains “hardwired
 filenames”, like "/opt/fop/fop". This means that, without
 modifications, this sample cannot be run from elsewhere than
 ebookc_install_dir/doc/manual/html/embed/ and that
 you'll almost certainly need to modify the source code in order to specify
 the actual location of the fop (fop.bat)
 script.
Index
A B C D E F G H I J K L M N O P Q R S T U V W X Y ZA
	adjustuserheadings, attribute of element book, 1, 2
	-ahf, option, 1
	-ahfconf, option, 1
	AHF, XSL-FO Processor, 1, 2, 3
	Antenna House Formatter. See AHF, XSL-FO Processor
	Apache
 FOP. See FOP, XSL-FO processor
	appendices, ebook element, 1
	appendicestocdepth, attribute of element
 book, 1
	appendix, ebook
 element, 1
	appendixnumber, attribute of element
 book, 1
	appendixtocdepth, attribute of element
 book, 1
	apply-css-styles, parameter, 1

B
	backmatter,
 ebook element, 1
	base-font-size, parameter, 1
	base-line-height, parameter, 1
	body, ebook
 element, 1
	body-bottom-margin, parameter, 1
	body-top-margin, parameter, 1
	book, ebook
 element, 1
	booklistlabels, attribute of element
 book, 1
	break, page header/footer variable, 1

C
	chapter, ebook
 element, 1
	chapternumber,
 attribute of element book, 1
	chapter-title, page header/footer
 variable, 1
	chaptertocdepth, attribute of element
 book, 1
	compatible, parameter, 1
	Conditional processing, 1
	content, ebook element, 1
	copiablelinks, "proc."
 parameter, 1
	cover-image, parameter, 1

D
	"data-*", common
 attributes, 1	profiling, 1

	data-external-resource, attribute, 1
	data-resource, attribute, 1
	data-xml-id-ref,
 another method to create links, 1, 2
	debug,
 "proc." parameter, 1
	division-title, page header/footer
 variable, 1
	document-date, page header/footer
 variable, 1
	document-title, page header/footer
 variable, 1
	docx, output
 format, 1
	-dryrun,
 option, 1

E
	ebookc, command-line tool, 1, 2, 3, 4
	ebookc.options, options file, 1, 2, 3
	epub, output
 format, 1
	epub-identifier, parameter, 1
	equationnumber, attribute of element
 book, 1
	-errout, option, 1
	examplenumber,
 attribute of element book, 1
	external-href-after, parameter, 1
	external-href-before, parameter, 1
	external-resource, value of attribute rel, 1
	externalresourcebase, "proc."
 parameter, 1

F
	-f, option, 1
	figurenumber,
 attribute of element book, 1
	fo, output
 format, 1
	-foconverter, option, 1
	font-family, parameter, 1
	footer-center, parameter, 1, 2
	footer-center-width, parameter, 1, 2
	footer-height, parameter, 1
	footer-left, parameter, 1, 2
	footer-left-width, parameter, 1, 2
	footer-right, parameter, 1, 2
	footer-right-width, parameter, 1, 2
	footer-separator, parameter, 1
	footnotenumber, attribute of element
 book, 1
	-fop, option, 1
	-fopconf, option, 1
	FOP, XSL-FO processor, 1, 2, 3, 4, 5
	foProcessor, parameter, 1
	-format, option, 1
	frameset,
 output format, 1
	framesetfilename, "proc."
 parameter, 1
	frontmatter,
 ebook element, 1

H
	head, ebook
 element, 1
	headcommon, ebook element, 1
	header-center, parameter, 1, 2
	header-center-width, parameter, 1, 2
	header-height, parameter, 1
	header-left, parameter, 1, 2
	header-left-width, parameter, 1, 2
	header-right, parameter, 1, 2
	header-right-width, parameter, 1, 2
	header-separator, parameter, 1
	headoverridedefault, attribute of element
 book, 1
	href, common
 attribute, 1
	html, output
 format, 1
	html1, output
 format, 1
	htmlcharset, "proc."
 parameter, 1
	htmlextension, "proc."
 parameter, 1
	hyphenate, parameter, 1

I
	ids, attribute of element
 related, 1
	-ignoreoptionsfile, option, 1
	ignoreresources, "proc."
 parameter, 1
	image(URI), page header/footer
 variable, 1
	img-src-path, parameter, 1
	includebasestylesheet, attribute of element
 book, 1
	index, ebook element, 1
	index-column-count, parameter, 1
	index-column-gap, parameter, 1
	indexfilename, "proc."
 parameter, 1
	"inode/directory", value of attribute type, 1

J
	justified, parameter, 1

K
	-keepfo,
 option, 1
	-keepforesources, option, 1

L
	labelseparator, attribute of element
 book, 1
	loe, ebook
 element, 1
	lof, ebook
 element, 1
	lot, ebook
 element, 1
	lox, ebook
 element, 1

M
	Markdown, 1, 2
	MathJax, 1
	MathML, 1

N
	note-icon-height, parameter, 1
	note-icon-width, parameter, 1

O
	-o, option, 1
	odt, output
 format, 1
	omit-toc-root, parameter, 1, 2
	-option,
 option, 1
	outputFormat, parameter, 1
	override, attribute of element head, 1

P
	-p, option, 1
	page-bottom-margin, parameter, 1
	pagebreak,
 processing-instruction, 1
	page-count, page header/footer variable, 1
	page-height, parameter, 1
	page-inner-margin, parameter, 1
	pagename, common attribute, 1
	pagenavigation, "proc."
 parameter, 1
	page-number, page header/footer
 variable, 1
	page-orientation, parameter, 1
	page-outer-margin, parameter, 1
	page-ref-after, parameter, 1
	page-ref-before, parameter, 1
	page-sequence, page header/footer
 variable, 1
	page-top-margin, parameter, 1
	page-width, parameter, 1
	paper-type, parameter, 1
	-param, option, 1
	part, ebook element, 1
	partnumber,
 attribute of element book, 1
	parttocdepth,
 attribute of element book, 1
	pdf, output
 format, 1
	pdf-outline, parameter, 1
	PostScript. See ps, output format
	preventlonelyheading, attribute of element
 book, 1
	"proc." parameters, 1
	Processor, main component of XMLmind Ebook
 Compiler, 1, 2
	"profile." parameters, 1. See also "data-*", common attributes, profiling
	Profiling. See Conditional processing
	ps, output
 format, 1

R
	related, ebook element, 1
	relation, attribute
 of element related, 1
	RenderX
 XEP. See XEP, XSL-FO processor
	reservedfilenames, "proc."
 parameter, 1
	resolve-a-href, parameter, 1
	resolve-img-src, parameter, 1
	resource,
 value of attribute rel, 1, 2, 3
	resourcedirname, "proc."
 parameter, 1
	resourcedirnamefor, "proc."
 parameter, 1
	role-attention, semantic class name, 1
	role-caution, semantic class name, 1
	role-danger,
 semantic class name, 1
	role-ebook-page, semantic class name, 1
	role-equation, semantic class name, 1
	role-example, semantic class name, 1
	role-fastpath, semantic class name, 1
	role-footnote, semantic class
 name, 1
	role-footnote-ref, semantic class
 name, 1
	role-important, semantic class name, 1
	role-index-term, semantic class name, 1
	role-listing, semantic class name, 1
	role-note,
 semantic class name, 1
	role-notice,
 semantic class name, 1
	role-remember, semantic class name, 1
	role-restriction, semantic class
 name, 1
	role-see,
 semantic class name, 1
	role-see-also, semantic class name, 1
	role-term, semantic class
 name, 1
	role-tip,
 semantic class name, 1
	role-trouble, semantic class name, 1
	role-warning, semantic class name, 1
	rtf, output
 format, 1

S
	samepage, common attribute, 1
	Schematron, 1
	screen-resolution, parameter, 1
	section, ebook
 element, 1
	section1number, attribute of element
 book, 1
	section1-title, page header/footer
 variable, 1
	section2number, attribute of element
 book, 1
	section3number, attribute of element
 book, 1
	section4number, attribute of element
 book, 1
	section5number, attribute of element
 book, 1
	section6number, attribute of element
 book, 1
	section7number, attribute of element
 book, 1
	section8number, attribute of element
 book, 1
	section9number, attribute of element
 book, 1
	show-external-links, parameter, 1
	show-map-links, parameter, 1
	show-xref-page, parameter, 1
	singlepage, "proc."
 parameter, 1
	suppressindex, "proc."
 parameter, 1
	suppresstoc, "proc."
 parameter, 1

T
	-t, option, 1
	tablenumber,
 attribute of element book, 1
	title, ebook
 element, 1
	titlelabels,
 attribute of element book, 1
	toc, ebook
 element, 1
	tocdepth, attribute
 of element book, 1
	tocframefilename, "proc."
 parameter, 1
	two-sided, parameter, 1

U
	ul-li-bullets, parameter, 1
	use-note-icon, parameter, 1
	use-note-label, parameter, 1

V
	-v, option, 1
	validate,
 "proc." parameter, 1
	-version, option, 1
	-vv, option, 1
	-vvv, option, 1

W
	W3C XML
 schema, 1
	watermark, parameter, 1
	watermark-image, parameter, 1
	webhelp,
 output format, 1
	whc-index-basename, parameter, 1
	wh-collapse-toc, parameter, 1
	wh---CSS_VAR_NAME, parameter, 1
	whc-toc-basename, parameter, 1
	wh-index-numbers, parameter, 1
	wh-inherit-font-and-colors,
 parameter, 1
	wh-jquery, parameter, 1
	wh-layout, parameter, 1
	wh-local-jquery, parameter, 1
	wh-responsive-ui, parameter, 1
	wh-ui-language, parameter, 1
	wh-user-css, parameter, 1
	wh-user-footer, parameter, 1
	wh-user-header, parameter, 1
	wh-user-resources, parameter, 1
	wh-use-stemming, parameter, 1
	wml, output
 format, 1

X
	-xep, option, 1, 2
	XEP, XSL-FO processor, 1, 2, 3, 4, 5
	-xfc,
 option, 1, 2
	XFC, XSL-FO processor, 1, 2, 3, 4
	xfc-render-as-table, parameter, 1
	XInclude, 1
	xml:base, common attribute, 1
	xml:id,
 common attribute, 1
	xml:lang, common attribute, 1, 2
	XML catalog, 1, 2, 3
	XMLmind Web Help
 Compiler, 1, 2
	XMLmind XML Editor, 1, 2, 3, 4
	XMLmind
 XSL-FO Converter. See XFC, XSL-FO processor
	xreflabels, attribute of element book, 1
	xsl-resources-directory, parameter, 1
	-xslt, option, 1
	XSLT 2.0, 1

assets/xxe_ebook_menu.png
- |Romemeno(7[-[B[-[m[-]S] gy

3
- ‘gﬂ.k.d Bomnme | fpanrec =i

‘ lemmiotrin b

e ok X | vhatbokcinl| v ind|_trgad] | oVt to Web el

Convertto Single HTML Page...
Convert to Multiple HTML Pages...

~ Book XMLmind Ebook Compiler Manual #titlePage html <1
ink href="css/xmimind_ebook.css” rel~"styleshe¢
:link href="cssficons/” rel-"resource” type="inode Convertto RTF (Word 2000-)...
Convert to WordprocessingML (Word 2003+)...
~ Frontmatter Convert to Office Open XML (Word 2007+)...

Table of Contents

Convertto OpenDocument (OpenOffice.org 2+)...

List of Figures
Convert to PDF...

List of Tables
List of Examples
List of Equations

B sanquay o

lraggable
ref.
vPat) fpagename
pser guide e
fartid
bentiang

Bl

&

[Chapter What is XMLmind Ebook Compiler? #whatsEbooke.html
Chapter Primer #primer htmi
Chapter Getting started #gettingStarted htmi

 Chapter

Handy features

assets/xxe_edit_index_term_dialog.png
oroie”parameters
(Sortasrote

© Mark aurrentlocation
(© Start range having the following name:

[Fdte-= comman atstes | ofing g

(o) (mmikhes] (nCxci)

assets/falcon.mp3
3.0302072

assets/falcon.wav

__toc__.xhtml
Table of Contents

		List of Figures

		List of Tables

		List of Examples

		List of Equations

		I. User guide		1. What is XMLmind Ebook Compiler?

		2. Primer

		3. Getting started

		4. Handy features		4.1. Markdown support		4.1.1. Supported Markdown extensions

		4.2. Automatic resource management

		4.3. Conditional processing

		4.4. Transclusion

		II. Reference		5. Installation

		6. Content of a source HTML page		6.1. [image: HTML5 logo]

 image/svg+xml

 HTML5 Logo

 HTML5 Logo

 Valid XHTML5

		6.2. Headings

		6.3. Examples

		6.4. Equations

		6.5. Admonitions

		6.6. Footnotes

		6.7. Cross-references

		6.8. Index terms

		7. Reference of ebook elements		7.1. Element appendices

		7.2. Element appendix

		7.3. Element backmatter

		7.4. Element body

		7.5. Element book

		7.6. Element chapter

		7.7. Element content

		7.8. Element frontmatter

		7.9. Element head

		7.10. Element headcommon

		7.11. Element index

		7.12. Element loe

		7.13. Element lof

		7.14. Element lot

		7.15. Element lox

		7.16. Element part

		7.17. Element related

		7.18. Element section

		7.19. Element title

		7.20. Element toc

		7.21. Common attributes

		8. How it works

		9. The ebookc command-line utility

		10. XSLT stylesheets parameters		10.1. Parameters of the XSLT stylesheets used to convert an ebook
 specification to EPUB

		10.2. Parameters of the XSLT stylesheets used to convert an ebook
 specification to Web Help

		10.3. Parameters of the XSLT stylesheets used to convert an ebook
 specification to XSL-FO		10.3.1. Specifying a header or a footer

		Appendices		A. Embedding
 com.xmlmind.ebook.convert.Converter

		Index

__cover__.png
XMLmind Ebook Compiler
Manual

-~ .
><naLmind Hussein Shafie

assets/bbb.mp4

